176 lines
6.2 KiB
Python
176 lines
6.2 KiB
Python
|
# -*- coding: iso-8859-1 -*-
|
||
|
|
||
|
from numpy import *
|
||
|
from scipy.signal import *
|
||
|
from scipy.optimize import *
|
||
|
from os import path, rename
|
||
|
|
||
|
def result():
|
||
|
|
||
|
measurement = MeasurementResult('Magnetization')
|
||
|
|
||
|
suffix = '' # output file name's suffix and...
|
||
|
counter = 1 # counter for arrayed experiments
|
||
|
|
||
|
# loop over the incoming results:
|
||
|
for timesignal in results:
|
||
|
if not isinstance(timesignal,ADC_Result):
|
||
|
continue
|
||
|
|
||
|
# read experiment parameters:
|
||
|
pars = timesignal.get_description_dictionary()
|
||
|
|
||
|
# rotate timesignal by current receiver's phase:
|
||
|
timesignal.phase(pars['rec_phase'])
|
||
|
|
||
|
# provide timesignal to the display tab:
|
||
|
data['Current scan'] = timesignal
|
||
|
|
||
|
# accumulate...
|
||
|
if not locals().get('accu'):
|
||
|
accu = Accumulation()
|
||
|
|
||
|
# skip dummy scans, if any:
|
||
|
if pars['run'] < 0: continue
|
||
|
|
||
|
# add up:
|
||
|
accu += timesignal
|
||
|
|
||
|
# provide accumulation to the display tab:
|
||
|
data['Accumulation'] = accu
|
||
|
|
||
|
# check how many scans are done:
|
||
|
if accu.n == pars['NS']: # accumulation is complete
|
||
|
|
||
|
# get number of echoes:
|
||
|
num_echoes = pars['NECH']
|
||
|
|
||
|
# downsize accu to one point per echo:
|
||
|
echodecay = accu + 0
|
||
|
echodecay.x = resize(echodecay.x, int(num_echoes))
|
||
|
echodecay.y[0] = resize(echodecay.y[0], int(num_echoes))
|
||
|
echodecay.y[1] = resize(echodecay.y[1], int(num_echoes))
|
||
|
|
||
|
# specify noise level:
|
||
|
if not locals().get('noise'):
|
||
|
echo = accu.get_accu_by_index(0)
|
||
|
noise = 0.1*max(abs(echo.y[0]))
|
||
|
samples = abs(echo.y[0]) > noise
|
||
|
|
||
|
# set echo times and intensities:
|
||
|
for i in range(num_echoes):
|
||
|
# get ith echo:
|
||
|
echo = accu.get_accu_by_index(i)
|
||
|
# set echo timing:
|
||
|
echodecay.x[i] = i*2*pars['TAU']
|
||
|
# set echo value:
|
||
|
echodecay.y[0][i] = sum(echo.y[0][samples]) # the sum of echo points that exeed noise
|
||
|
echodecay.y[1][i] = sum(echo.y[1][samples])
|
||
|
#echodecay.y[0][i] = sum(echo.y[0]) # the sum of all echo points
|
||
|
#echodecay.y[1][i] = sum(echo.y[1])
|
||
|
#echodecay.y[0][i] = echo.y[0][echo.x.size/2] # a middle echo point
|
||
|
#echodecay.y[1][i] = echo.y[1][echo.x.size/2]
|
||
|
|
||
|
# compute a signal's phase:
|
||
|
phi0 = arctan2(echodecay.y[1][0], echodecay.y[0][0]) * 180 / pi
|
||
|
if not locals().get('ref'): ref = phi0
|
||
|
print 'phi0 = ', phi0
|
||
|
|
||
|
# rotate signal to maximize Re (optional):
|
||
|
#echodecay.phase(-phi0)
|
||
|
|
||
|
# provide echo decay to the display tab:
|
||
|
data['Echo Decay'] = echodecay
|
||
|
|
||
|
# fit a mono-exponential function to the echo decay:
|
||
|
[amplitude, rate] = fitfunc(echodecay.x, echodecay.y[0])
|
||
|
print '%s%02g' % ('Amplitude = ', amplitude)
|
||
|
print '%s%02g' % ('T2 [s] = ', 1./rate)
|
||
|
|
||
|
# provide the fit to the display tab:
|
||
|
fit = MeasurementResult('Mono-Exponential Fit')
|
||
|
for i, key in enumerate(echodecay.x):
|
||
|
fit[key] = echodecay.y[0][i]
|
||
|
fit.y = func([amplitude, rate], echodecay.x)
|
||
|
data[fit.get_title()] = fit
|
||
|
|
||
|
# check whether it is an arrayed experiment:
|
||
|
var_key = pars.get('VAR_PAR')
|
||
|
if var_key:
|
||
|
# get variable parameter's value:
|
||
|
var_value = pars.get(var_key)
|
||
|
|
||
|
# provide data recorded with different var_value's to the display tab:
|
||
|
data['Accumulation'+"/"+var_key+"=%e"%(var_value)] = accu
|
||
|
data['Echo Decay'+"/"+var_key+"=%e"%(var_value)] = echodecay
|
||
|
data[fit.get_title()+"/"+var_key+"=%e"%(var_value)] = fit
|
||
|
|
||
|
# measure a signal parameter vs. var_value:
|
||
|
measurement[var_value] = amplitude
|
||
|
#measurement[var_value] = sum(echodecay.y[0][:])
|
||
|
#measurement[var_value] = 1./rate
|
||
|
|
||
|
# provide measurement to the display tab:
|
||
|
data[measurement.get_title()] = measurement
|
||
|
|
||
|
# save accu if required:
|
||
|
outfile = pars.get('OUTFILE')
|
||
|
if outfile:
|
||
|
datadir = pars.get('DATADIR')
|
||
|
|
||
|
# write data in Simpson format:
|
||
|
filename = datadir+outfile+suffix+'.dat'
|
||
|
if path.exists(filename):
|
||
|
rename(filename, datadir+'~'+outfile+suffix+'.dat')
|
||
|
accu.write_to_simpson(filename)
|
||
|
|
||
|
# write data in Tecmag format:
|
||
|
# filename = datadir+outfile+'.tnt'
|
||
|
# accu.write_to_tecmag(filename, nrecords=20)
|
||
|
|
||
|
# write parameters in a text file:
|
||
|
filename = datadir+outfile+suffix+'.par'
|
||
|
if path.exists(filename):
|
||
|
rename(filename, datadir+'~'+outfile+suffix+'.par')
|
||
|
|
||
|
fileobject = open(filename, 'w')
|
||
|
for key in sorted(pars.iterkeys()):
|
||
|
if key=='run': continue
|
||
|
if key=='rec_phase': continue
|
||
|
fileobject.write('%s%s%s'%(key,'=', pars[key]))
|
||
|
fileobject.write('\n')
|
||
|
fileobject.close()
|
||
|
|
||
|
# reset accumulation:
|
||
|
del accu
|
||
|
|
||
|
# the fitting procedure:
|
||
|
def fitfunc(xdata, ydata):
|
||
|
|
||
|
# initialize variable parameters:
|
||
|
try:
|
||
|
# solve Az = b:
|
||
|
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
|
||
|
b = log(abs(ydata[0:xdata.size/2]))
|
||
|
z = linalg.lstsq(transpose(A), b)
|
||
|
amplitude = exp(z[0][0])
|
||
|
rate = -z[0][1]
|
||
|
except:
|
||
|
amplitude = abs(ydata[0])
|
||
|
rate = 1./(xdata[-1] - xdata[0])
|
||
|
p0 = [amplitude, rate]
|
||
|
|
||
|
# run least-squares optimization:
|
||
|
plsq = leastsq(residuals, p0, args=(xdata, ydata))
|
||
|
|
||
|
return plsq[0] # best-fit parameters
|
||
|
|
||
|
def residuals(p, xdata, ydata):
|
||
|
return ydata - func(p, xdata)
|
||
|
|
||
|
# here is the function to fit:
|
||
|
def func(p, xdata):
|
||
|
return p[0]*exp(-p[1]*xdata)
|
||
|
|
||
|
|
||
|
pass
|