initial check-in

This commit is contained in:
Markus Rosenstihl
2015-06-26 12:17:24 +00:00
commit d994875c0f
37 changed files with 7044 additions and 0 deletions

635
AU_Programs/2H/op_2h_exp.py Normal file
View File

@ -0,0 +1,635 @@
# -*- coding: iso-8859-1 -*-
TXEnableDelay = 2e-6
TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0)
TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1)
ADCSensitivity = 1 # voltage span for ADC
def experiment(): # drives four experiments in a row: saturation-recovery, solid echo, spin-alignment, and Zeeman-order
# experiment toggles:
satrec2_flag = True # saturation-recovery on/off
solidecho_flag = True # solid-echo on/off
spinal_flag = True # spin-alignment on/off
zeeman_flag = False # Zeeman-order on/off
# ------------------ Saturation-recovery experiment settings ----------------------
if satrec2_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 2.0e-6 # 90-degree pulse length (s)
pars['SF'] = 46.7e6 # spectrometer frequency (Hz)
pars['O1'] = -60e3 # offset from SF (Hz)
pars['SW'] = 10e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 8 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['TAU'] = 1 # delay for recovery (s)
pars['D3'] = 20e-6 # echo delay (s)
pars['D4'] = 0 # echo pre-aquisition delay (s)
pars['PHA'] = 0 # receiver phase (degree)
# -*- these ain't variable: -*-
pars['NECH'] = 40 # number of saturation pulses
pars['D1'] = 100e-3 # starting interval in saturation sequence (s)
pars['D2'] = 1e-4 # end interval in saturation sequence (s)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'TAU' # variable parameter name (a string)
start = 1e-3 # starting value
stop = 1 # end value
steps = 12 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
if pars['D1'] < pars['D2']:
raise Exception("D1 must be greater than D2!")
sat_length = sum(log_range(pars['D1'],pars['D2'],pars['NECH']))
if sat_length > 1.:
raise Exception("saturation sequence too long!!!")
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start, stop, steps)
else:
array = lin_range(start, stop, steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'TAU':
seconds = ((sat_length + pars['D3']*2) * steps + sum(array)) * (pars['NS'] + pars['DS'])
elif var_key == 'D3':
seconds = ((sat_length + pars['TAU']) * steps + sum(array)*2) * (pars['NS'] + pars['DS'])
else:
seconds = (sat_length + pars['TAU'] + pars['D3']*2) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed saturation-recovery experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield satrec2_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (sat_length + pars['TAU'] + pars['D3']*2) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield satrec2_experiment(pars, run)
# ------------------ Solid-echo experiment settings ----------------------
if solidecho_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 2.0e-6 # 90-degree pulse length (s)
pars['SF'] = 46.7e6 # spectrometer frequency (Hz)
pars['O1'] = -60e3 # offset from SF (Hz)
pars['SW'] = 500e3 # spectral window (Hz)
pars['SI'] = 1*1024 # number of acquisition points
pars['NS'] = 8 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 1 # delay between scans (s)
pars['TAU'] = 20e-6 # echo delay (s)
pars['D4'] = 0e-6 # echo pre-acquisition delay (s)
pars['PHA'] = 0 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = None # variable parameter name (a string)
start = 10e-6 # starting value
stop = 30e-6 # end value
steps = 5 # number of values
log_scale = False # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'TAU':
seconds = (sum(array)*2 + pars['RD'] * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + pars['TAU']*2 * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['TAU']*2 + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed solid-echo experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield solidecho_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['TAU']*2 + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield solidecho_experiment(pars, run)
# ---------------- Spin-alignment experiment settings ------------------
if spinal_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 2.0e-6 # 90-degree pulse length (s)
pars['SF'] = 46.7e6 # spectrometer frequency (Hz)
pars['O1'] = -60e3 # offset from SF (Hz)
pars['SW'] = 10e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 8 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 1 # delay between scans (s)
pars['D1'] = 30e-6 # delay after first pulse, or tp (s)
pars['D2'] = 100e-6 # delay after second pulse, or tm (s)
pars['PHA'] = -36 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
start = 30e-6 # starting value
stop = 1e-3 # end value
steps = 12 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ', pars['NS'], ' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'D1':
seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'D2':
seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed spin-alignment experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield spinal_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield spinal_experiment(pars, run)
# ------------------ Zeeman-order experiment settings ----------------------
if zeeman_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 2.0e-6 # 90-degree pulse length (s)
pars['SF'] = 46.7e6 # spectrometer frequency (Hz)
pars['O1'] = -60e3 # offset from SF (Hz)
pars['SW'] = 10e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 8 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 1 # delay between scans (s)
pars['D1'] = 30e-6 # delay after first pulse, or 'short tau' (s)
pars['D2'] = 100e-6 # delay after second pulse, or 'long tau' (s)
pars['PHA'] = 0 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
start = 30e-6 # starting value
stop = 1e-3 # end value
steps = 12 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'D1':
seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'D2':
seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed Zeeman-order experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield zeeman_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield zeeman_experiment(pars, run)
# the pulse programs:
def satrec2_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'satrec2_experiment'
# phase lists:
pars['PH1'] = [ 0] # saturation pulses
pars['PH3'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # 1st 90-degree pulse
pars['PH4'] = [90, 90, 270, 270, 0, 0, 180, 180] # 2nd 90-degree pulse
pars['PH2'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # receiver
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
NECH = pars['NECH']
D1 = pars['D1']
D2 = pars['D2']
D3 = pars['D3']
D4 = pars['D4']
TAU = pars['TAU']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set variable delay list for saturation pulses:
vdlist = log_range(D2, D1, NECH-1)
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# the pulse sequence:
# saturation:
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
for delay in vdlist[::-1]:
e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
# recovery:
e.wait(TAU) # wait for tau
e.set_phase(PH3) # set phase for next pulse
# echo detection:
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
e.wait(D3-P90/2-TXEnableDelay) # echo delay
e.set_phase(PH4) # set phase for next pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
e.set_phase(PHA) # set phase for receiver
e.wait(D3-P90/2+D4) # echo delay
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment attributes:
for key in pars.keys():
e.set_description(key, pars[key]) # pulse sequence parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e
def solidecho_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'solidecho_experiment'
# phase lists [from Tecmag's pulse sequence]:
pars['PH1'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # 1st 90-degree pulse
pars['PH3'] = [90, 90, 270, 270, 0, 0, 180, 180] # 2nd 90-degree pulse
pars['PH2'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # receiver
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
TAU = pars['TAU']
D4 = pars['D4']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# run the pulse sequence:
e.wait(RD) # delay between scans
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for 1st RF pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 1st 90-degree pulse
e.wait(TAU-P90/2-TXEnableDelay) # wait for TAU
e.set_phase(PH3) # set phase for 2nd 90-degree pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enalble RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 2nd 90-degree pulse
e.set_phase(PHA) # set phase for receiver
e.wait(TAU-P90/2+D4) # wait for TAU
e.record(SI, SW, sensitivity=ADCSensitivity) # acquire echo points
# write the experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # pulse sequence parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e
def spinal_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'spinal_experiment'
# 8-step phase cycle (1-14 modifided to deal with T1-recovery and extended for Re/Im imbalance)
pars['PH1'] = [0, 270, 0, 270, 90, 90, 180, 180 ] # 1st (90-degree) pulse
pars['PH3'] = [90,180, 90, 180, 180, 180, 90, 90 ] # 2nd (45-degree) pulse
pars['PH4'] = [90, 90, 270, 270, 180, 0, 0, 180 ] # 3rd (45-degree) pulse
pars['PH2'] = [0, 180, 180, 0, 90, 270, 90, 270 ] # receiver
# read in variables:
P90 = pars['P90']
P45 = pars['P90']*0.5
P1 = pars['P90']*0.5
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
D1 = pars['D1']
D2 = pars['D2']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# run the pulse sequence:
e.wait(RD) # relaxation delay between scans
e.set_frequency(SF+O1, phase=PH1)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(D1-P90/2-TXEnableDelay) # 'short tau'
e.set_phase(PH3)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P45, value=TXEnableValue|TXPulseValue) # 45-degree pulse
e.wait(D2-P45/2-TXEnableDelay) # 'long tau'
e.set_phase(PH4)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P1, value=TXEnableValue|TXPulseValue) # 45-degree pulse
e.wait(TXEnableDelay)
e.set_phase(PHA)
e.wait(5e-6)#D1-P45/2-TXEnableDelay) # 'short tau'
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # acquisition parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e
def zeeman_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'zeeman_experiment'
# 8-step phase cycle (1-21 modifided to deal with T1-recovery and extended for Re/Im imbalance)
pars['PH1'] = [0, 270, 0, 270, 180, 90, 180, 90] # 1st (90-degree) pulse
pars['PH3'] = [0, 90, 0, 90, 0, 90, 0, 90] # 2nd (90-degree) pulse
pars['PH4'] = [0, 0, 180, 180, 270, 270, 90, 90] # 3rd (90-degree) pulse
pars['PH2'] = [0, 180, 180, 0, 90, 270, 270, 90] # receiver
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
D1 = pars['D1']
D2 = pars['D2']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# run the pulse sequence:
e.wait(RD) # relaxation delay between scans
e.set_frequency(SF+O1, phase=PH1)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(D1-P90/2-TXEnableDelay) # 'short tau'
e.set_phase(PH3)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(D2-P90/2-TXEnableDelay) # 'long tau'
e.set_phase(PH4)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(TXEnableDelay)
e.set_phase(PHA)
e.wait(D1-P90/2-TXEnableDelay) # 'short tau'
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # acquisition parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e

282
AU_Programs/2H/op_2h_res.py Normal file
View File

@ -0,0 +1,282 @@
# -*- coding: iso-8859-1 -*-
from numpy import *
from scipy.signal import *
from scipy.optimize import *
from os import path, rename
def result():
the_experiment = None # current experiment's name
measurements = {'satrec2_experiment': MeasurementResult('Saturation Recovery'),
'solidecho_experiment': MeasurementResult('Solid Echo'),
'spinal_experiment': MeasurementResult('Spin Alignment'),
'zeeman_experiment': MeasurementResult('Zeeman Order')}
measurement_ranges = {'satrec2_experiment': [0.5e-6, 4.5e-6],
'solidecho_experiment': [0.5e-6, 4.5e-6],
'spinal_experiment': [0.5e-6, 4.5e-6],
'zeeman_experiment': [0.5e-6, 4.5e-6]}
measurement_ranging = True
# loop over the incoming results:
for timesignal in results:
if not isinstance(timesignal,ADC_Result):
continue
# read experiment parameters:
pars = timesignal.get_description_dictionary()
# keep track of the actual experiment's name:
if the_experiment != pars.get('PROG'):
the_experiment = pars.get('PROG')
suffix = '' # output file name's suffix
counter = 1
# ---------------- digital filter ------------------
# get actual sampling rate of timesignal:
sampling_rate = timesignal.get_sampling_rate()
# get user-defined spectrum width:
spec_width = pars['SW']
# specify cutoff frequency, in relative units:
cutoff = spec_width / sampling_rate
# number of filter's coefficients:
numtaps = 29
if cutoff < 1: # otherwise no filter applied
# use firwin to create a lowpass FIR filter:
fir_coeff = firwin(numtaps, cutoff)
# downsize x according to user-defined spectral window:
skip = int(sampling_rate / spec_width)
timesignal.x = timesignal.x[::skip]
for i in range(2):
# apply the filter to ith channel:
timesignal.y[i] = lfilter(fir_coeff, 1.0, timesignal.y[i])
# zeroize first N-1 "corrupted" samples:
timesignal.y[i][:numtaps-1] = 0.0
# circular left shift of y:
timesignal.y[i] = roll(timesignal.y[i], -(numtaps-1))
# downsize y to user-defined number of samples (SI):
timesignal.y[i] = timesignal.y[i][::skip]
# update the sampling_rate attribute of the signal's:
timesignal.set_sampling_rate(spec_width)
# ----------------------------------------------------
# rotate timesignal according to current receiver's phase:
timesignal.phase(pars['rec_phase'])
# provide timesignal to the display tab:
data['Current scan'] = timesignal
# accumulate...
if not locals().get('accu'):
accu = Accumulation()
# skip dummy scans, if any:
if pars['run'] < 0: continue
# add up:
accu += timesignal
# provide accumulation to the display tab:
data['Accumulation'] = accu
# check how many scans are done:
if accu.n == pars['NS']: # accumulation is complete
# make a copy:
echo = accu + 0
# compute the signal's phase:
#phi0 = arctan2(accu.y[1][0], accu.y[0][0]) * 180 / pi
#if not locals().get('ref'): ref = phi0
#print 'phi0 = ', phi0
# rotate the signal to maximize Re (optional):
#echo.phase(-phi0)
# check whether it is an arrayed experiment:
var_key = pars.get('VAR_PAR')
if var_key:
# get variable parameter's value:
var_value = pars.get(var_key)
# provide signal recorded with this var_value to the display tab:
data['Accumulation'+"/"+var_key+"=%e"%(var_value)] = accu
# estimate noise level:
if not locals().get('noise'):
n = int(0.1*accu.x.size)
noise = 3*std(accu.y[0][-n-29:-30])
# measure signal intensity vs. var_value:
if the_experiment in measurements.keys():
# option a: the sum of samples within the given range:
if measurement_ranging == True:
[start, stop] = echo.get_sampling_rate() * array(measurement_ranges[the_experiment])
measurements[the_experiment][var_value] = sum(echo.y[0][int(start):int(stop)])
# option b: the sum of all samples above noise:
else:
measurements[the_experiment][var_value] = sum(echo.y[0][echo.y[0]>noise])
# store a measurement:
data[measurements[the_experiment].get_title()] = measurements[the_experiment]
# update the file name suffix:
suffix = '_' + str(counter)
counter += 1
else:
print "Cannot recognize experiment: continue without measuring"
# save accu if required:
outfile = pars.get('OUTFILE')
if outfile:
datadir = pars.get('DATADIR')
# write raw data in Simpson format:
filename = datadir+outfile+suffix+'.dat'
if path.exists(filename):
rename(filename, datadir+'~'+outfile+suffix+'.dat')
accu.write_to_simpson(filename)
# write parameters in a text file:
filename = datadir+outfile+suffix+'.par'
if path.exists(filename):
rename(filename, datadir+'~'+outfile+suffix+'.par')
fileobject = open(filename, 'w')
for key in sorted(pars.iterkeys()):
if key=='run': continue
if key=='rec_phase': continue
fileobject.write('%s%s%s'%(key,'=', pars[key]))
fileobject.write('\n')
fileobject.close()
# reset accumulation:
del accu
if var_key == 'TAU' or var_key == 'D2':
# mono-exponential saturation-recovery fit:
try:
xdata = measurements['satrec2_experiment'].get_xdata()
ydata = measurements['satrec2_experiment'].get_ydata()
[amplitude, rate, offset] = fitfunc_recovery(xdata, ydata)
print 'Mono-exponential fit to saturation-recovery data:'
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T1 [s] = ', 1./rate)
# update display for fit:
measurements['satrec2_experiment'].y = func_recovery([amplitude, rate, offset], xdata)
data[measurements['satrec2_experiment'].get_title()] = measurements['satrec2_experiment']
except:
pass
# KWW fit to spin-alignment echoes:
try:
xdata = measurements['spinal_experiment'].get_xdata()
ydata = measurements['spinal_experiment'].get_ydata()
[amplitude, rate, beta] = fitfunc_kww(xdata, ydata)
print 'KWW fit to spin-alignment echoes:'
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T2 [s] = ', 1./rate)
print '%s%01g' % ('Beta = ', beta)
# update display for the fit:
measurements['spinal_experiment'].y = func_kww([amplitude, rate, beta], xdata)
data[measurements['spinal_experiment'].get_title()] = measurements['spinal_experiment']
except:
pass
# KWW fit to Zeeman-order echoes:
try:
xdata = measurements['zeeman_experiment'].get_xdata()
ydata = measurements['zeeman_experiment'].get_ydata()
[amplitude, rate, beta] = fitfunc_kww(xdata, ydata)
print 'KWW fit to Zeeman-order echoes:'
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T2 [s] = ', 1./rate)
print '%s%01g' % ('Beta = ', beta)
# update display for the fit:
measurements['zeeman_experiment'].y = func_kww([amplitude, rate, beta], xdata)
data[measurements['zeeman_experiment'].get_title()] = measurements['zeeman_experiment']
except:
pass
# the fitting procedure for satrec_experiment:
def fitfunc_recovery(xdata, ydata):
# initialize variable parameters:
try:
# solve Az = b:
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
b = log(abs(mean(ydata[-2:]) - ydata[0:xdata.size/2]))
z = linalg.lstsq(transpose(A), b)
amplitude = exp(z[0][0])
rate = -z[0][1]
except:
amplitude = abs(ydata[-1] - ydata[0])
rate = 1./(xdata[-1] - xdata[0])
offset = min(ydata)
p0 = [amplitude, rate, offset]
# run least-squares optimization:
plsq = leastsq(residuals_recovery, p0, args=(xdata, ydata))
return plsq[0] # best-fit parameters
def residuals_recovery(p, xdata, ydata):
return ydata - func_recovery(p, xdata)
# here is the function to fit
def func_recovery(p, xdata):
return p[0]*(1-exp(-p[1]*xdata)) + p[2]
# the fitting procedure for spinal_experiment and zeeman_experiment:
def fitfunc_kww(xdata, ydata):
# initialize variable parameters:
try:
# solve Az = b:
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
b = log(abs(ydata[0:xdata.size/2]))
z = linalg.lstsq(transpose(A), b)
amplitude = exp(z[0][0])
rate = -z[0][1]
except:
amplitude = abs(ydata[0])
rate = 1./(xdata[-1] - xdata[0])
beta = 1.
p0 = [amplitude, rate, beta]
# run least-squares optimization:
plsq = leastsq(residuals_kww, p0, args=(xdata, ydata))
return plsq[0] # best-fit parameters
def residuals_kww(p, xdata, ydata):
return ydata - func_kww(p, xdata)
# here is the function to fit:
def func_kww(p, xdata):
return p[0]*exp(-(p[1]*xdata)**p[2])
pass

View File

@ -0,0 +1,483 @@
# -*- coding: iso-8859-1 -*-
TXEnableDelay = 2e-6
TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0)
TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1)
ADCSensitivity = 1 # voltage span for ADC
def experiment(): # drives three experiments in a row: saturation-recovery, stimulated echo, and Hanh echo
# experiments switches:
satrec2_flag = True # saturation-recovery switch
ste_flag = True # stimulated-echo switch
hahn_flag = False # Hahn-echo switch
# ------------------ Saturation-recovery experiment settings ----------------------
if satrec2_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 1.7e-6 # 90-degree pulse length (s)
pars['SF'] = 62.92e6 # spectrometer frequency (Hz)
pars['O1'] = 0e3 # offset from SF (Hz)
pars['SW'] = 20e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 512 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['TAU'] = 1 # delay for recovery (s)
pars['D3'] = 20e-6 # echo delay (s)
pars['D4'] = 0 # echo pre-aquisition delay (s)
pars['PHA'] = 50 # receiver phase (degree)
# -*- these ain't variable: -*-
pars['NECH'] = 20 # number of saturation pulses
pars['D1'] = 100e-3 # starting interval in saturation sequence (s)
pars['D2'] = 1e-4 # end interval in saturation sequence (s)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = '360K' # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'TAU' # variable parameter name (a string)
start = 1e-3 # starting value
stop = 1e-0 # end value
steps = 12 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
if pars['D1'] < pars['D2']:
raise Exception("D1 must be greater than D2!")
sat_length = sum(log_range(pars['D1'],pars['D2'],pars['NECH']))
if sat_length > 1.:
raise Exception("saturation sequence too long!!!")
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start, stop, steps)
else:
array = lin_range(start, stop, steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'TAU':
seconds = ((sat_length + pars['D3']*2) * steps + sum(array)) * (pars['NS'] + pars['DS'])
elif var_key == 'D3':
seconds = ((sat_length + pars['TAU']) * steps + sum(array)*2) * (pars['NS'] + pars['DS'])
else:
seconds = (sat_length + pars['TAU'] + pars['D3']*2) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed saturation-recovery experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield satrec2_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (sat_length + pars['TAU'] + pars['D3']*2) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield satrec2_experiment(pars, run)
# ---------------- Stimulated-echo experiment settings ------------------
if ste_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 1.6e-6 # 90-degree pulse length (s)
pars['SF'] = 62.92e6 # spectrometer frequency (Hz)
pars['O1'] = 0e3 # offset from SF (Hz)
pars['SW'] = 20e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 512 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 1 # delay between scans (s)
pars['D1'] = 400e-6 # delay after first pulse (short tau) (s)
pars['D2'] = 20e-6 # delay after second pulse (long tau) (s)
pars['PHA'] = 240 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = '210K' # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
start = 350e-6 # starting value
stop = 1e-0 # end value
steps = 16 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%16 != 0:
pars['NS'] = int(round(pars['NS'] / 16) + 1) * 16
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'D1':
seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'D2':
seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed stimulated-echo experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield ste_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield ste_experiment(pars, run)
# ------------------ Hahn-echo experiment settings ----------------------
if hahn_flag == True:
# set up acquisition parameters:
pars = {}
pars['P90'] = 1.6e-6 # 90-degree pulse length (s)
pars['SF'] = 62.92e6 # spectrometer frequency (Hz)
pars['O1'] = 0e3 # offset from SF (Hz)
pars['SW'] = 20e6 # spectral window (Hz)
pars['SI'] = 1*512 # number of acquisition points
pars['NS'] = 512 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 1 # delay between scans (s)
pars['TAU'] = 10e-6 # echo delay (s)
pars['D4'] = 0e-6 # echo pre-acquisition delay (s)
pars['PHA'] = 170 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Students/' # data directory
pars['OUTFILE'] = 'test' # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'TAU' # variable parameter name (a string)
start = 20e-6 # starting value
stop = 1e-3 # end value
steps = 16 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%8 != 0:
pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'TAU':
seconds = (sum(array)*2 + pars['RD'] * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + pars['TAU']*2 * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['TAU']*2 + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed Hahn-echo experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield hahn_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['TAU']*2 + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield hahn_experiment(pars, run)
# the pulse programs:
def satrec2_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'satrec2_experiment'
# phase lists:
pars['PH1'] = [ 0] # saturation pulses
pars['PH3'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # 1st 90-degree pulse
pars['PH4'] = [90, 90, 270, 270, 0, 0, 180, 180] # 2nd 90-degree pulse
pars['PH2'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # receiver
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
NECH = pars['NECH']
D1 = pars['D1']
D2 = pars['D2']
D3 = pars['D3']
D4 = pars['D4']
TAU = pars['TAU']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set variable delay list for saturation pulses:
vdlist = log_range(D2, D1, NECH-1)
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# the pulse sequence:
# saturation:
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
for delay in vdlist[::-1]:
e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
# recovery:
e.wait(TAU) # wait for tau
e.set_phase(PH3) # set phase for next pulse
# echo detection:
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
e.wait(D3-P90/2-TXEnableDelay) # echo delay
e.set_phase(PH4) # set phase for next pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
e.set_phase(PHA) # set phase for receiver
e.wait(D3-P90/2+D4) # echo delay
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment attributes:
for key in pars.keys():
e.set_description(key, pars[key]) # pulse sequence parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e
def ste_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'ste_experiment'
# phase lists [16-phase cycle from JMR 157, 31 (2002)]:
pars['PH1'] = [0, 180, 0, 180, 0, 180, 0, 180, 90, 270, 90, 270, 90, 270, 90, 270] # 1st 90-degree pulse
pars['PH3'] = [0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180] # 2nd 90-degree pulse
pars['PH4'] = [0, 0, 0, 0, 180, 180, 180, 180, 0, 0, 0, 0, 180, 180, 180, 180] # 3nd 90-degree pulse
pars['PH2'] = [0, 180, 180, 0, 180, 0, 0, 180, 270, 90, 90, 270, 90, 270, 270, 90] # receiver
# read in variables:
P90 = pars['P90']
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
D1 = pars['D1']
D2 = pars['D2']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# run the pulse sequence:
e.wait(RD) # relaxation delay between scans
e.set_frequency(SF+O1, phase=PH1)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(D1-P90/2-TXEnableDelay) # 'short tau or tp'
e.set_phase(PH3)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(D2-P90/2-TXEnableDelay) # 'long tau or tm'
e.set_phase(PH4)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
e.wait(TXEnableDelay)
e.set_phase(PHA)
e.wait(D1-P90/2-TXEnableDelay) # 'short tau or tp'
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
# write experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # acquisition parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e
def hahn_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'hahn_experiment'
# phase lists [from Tecmag's pulse sequence]:
pars['PH1'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # 90-degree pulse
pars['PH3'] = [ 0, 0, 180, 180, 270, 270, 90, 90] # 180-degree pulse
pars['PH2'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # receiver
# read in variables:
P90 = pars['P90']
P180 = pars['P90']*2
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
TAU = pars['TAU']
D4 = pars['D4']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = pars['SI']
SW = pars['SW']
while SW <= 10e6 and SI < 256*1024:
SI *= 2
SW *= 2
# run the pulse sequence:
e.wait(RD) # delay between scans
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for 1st RF pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 1st 90-degree pulse
e.wait(TAU-P90/2-TXEnableDelay) # wait for TAU
e.set_phase(PH3) # set phase for 2nd 90-degree pulse
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enalble RF amplifier
e.ttl_pulse(P180, value=TXEnableValue|TXPulseValue) # apply 2nd 90-degree pulse
e.set_phase(PHA) # set phase for receiver
e.wait(TAU-P180/2+D4) # wait for TAU
e.record(SI, SW, sensitivity=ADCSensitivity) # acquire echo points
# write the experiment parameters:
for key in pars.keys():
e.set_description(key, pars[key]) # pulse sequence parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e

View File

@ -0,0 +1,275 @@
# -*- coding: iso-8859-1 -*-
from numpy import *
from scipy.signal import *
from scipy.optimize import *
from os import path, rename
def result():
the_experiment = None # current experiment's name
measurements = {'satrec2_experiment': MeasurementResult('Saturation Recovery'),
'ste_experiment': MeasurementResult('Stimulated Echo'),
'hahn_experiment': MeasurementResult('Hahn Echo')}
measurement_ranges = {'satrec2_experiment': [0.5e-6, 4.5e-6],
'ste_experiment': [1.5e-6, 4.5e-6],
'hahn_experiment': [2.5e-6, 4.5e-6]}
measurement_ranging = True
# loop over the incoming results:
for timesignal in results:
if not isinstance(timesignal,ADC_Result):
continue
# read experiment parameters:
pars = timesignal.get_description_dictionary()
# catch the actual experiment's name:
if the_experiment != pars.get('PROG'):
the_experiment = pars.get('PROG')
suffix = '' # output file name's suffix
counter = 1
# ---------------- digital filter ------------------
# get actual sampling rate of timesignal:
sampling_rate = timesignal.get_sampling_rate()
# get user-defined spectrum width:
spec_width = pars['SW']
# specify cutoff frequency, in relative units:
cutoff = spec_width / sampling_rate
# number of filter's coefficients:
numtaps = 29
if cutoff < 1: # otherwise no filter applied
# use firwin to create a lowpass FIR filter:
fir_coeff = firwin(numtaps, cutoff)
# downsize x according to user-defined spectral window:
skip = int(sampling_rate / spec_width)
timesignal.x = timesignal.x[::skip]
for i in range(2):
# apply the filter to ith channel:
timesignal.y[i] = lfilter(fir_coeff, 1.0, timesignal.y[i])
# zeroize first N-1 "corrupted" samples:
timesignal.y[i][:numtaps-1] = 0.0
# circular left shift of y:
timesignal.y[i] = roll(timesignal.y[i], -(numtaps-1))
# downsize y to user-defined number of samples (SI):
timesignal.y[i] = timesignal.y[i][::skip]
# update the sampling_rate attribute of the signal's:
timesignal.set_sampling_rate(spec_width)
# ----------------------------------------------------
# rotate timesignal according to current receiver's phase:
timesignal.phase(pars['rec_phase'])
# provide timesignal to the display tab:
data['Current scan'] = timesignal
# accumulate...
if not locals().get('accu'):
accu = Accumulation()
# skip dummy scans, if any:
if pars['run'] < 0: continue
# add up:
accu += timesignal
# provide accumulation to the display tab:
data['Accumulation'] = accu
# check how many scans are done:
if accu.n == pars['NS']: # accumulation is complete
# make a copy:
echo = accu + 0
# compute the signal's phase:
#phi0 = arctan2(echo.y[1][0], echo.y[0][0]) * 180 / pi
#if not locals().get('ref'): ref = phi0
#print 'phi0 = ', phi0
# rotate the signal to maximize Re (optional):
#echo.phase(-phi0)
# check whether it is an arrayed experiment:
var_key = pars.get('VAR_PAR')
if var_key:
# get variable parameter's value:
var_value = pars.get(var_key)
# store signals recorded for different var_values:
data['Accumulation'+"/"+var_key+"=%e"%(var_value)] = accu
# estimate noise level:
if not locals().get('noise'):
n = int(0.1*echo.x.size)
noise = 3*std(echo.y[0][-n-numtaps:-1-numtaps])
# measure echo intensity vs. var_value:
if the_experiment in measurements.keys():
# option a: sum over the time interval specified:
if measurement_ranging == True:
[start, stop] = echo.get_sampling_rate() * array(measurement_ranges[the_experiment])
measurements[the_experiment][var_value] = sum(echo.y[0][int(start):int(stop)])
# option b: sum of all samples above noise:
else:
measurements[the_experiment][var_value] = sum(echo.y[0][echo.y[0]>noise])
# store a measurement:
data[measurements[the_experiment].get_title()] = measurements[the_experiment]
# update the file name suffix:
suffix = '_' + str(counter)
counter += 1
else:
print "Cannot recognize experiment: continue without measuring"
# save accu if required:
outfile = pars.get('OUTFILE')
if outfile:
datadir = pars.get('DATADIR')
# write raw data in Simpson format:
filename = datadir+outfile+suffix+'.dat'
if path.exists(filename):
rename(filename, datadir+'~'+outfile+suffix+'.dat')
accu.write_to_simpson(filename)
# write parameters in a text file:
filename = datadir+outfile+suffix+'.par'
if path.exists(filename):
rename(filename, datadir+'~'+outfile+suffix+'.par')
fileobject = open(filename, 'w')
for key in sorted(pars.iterkeys()):
if key=='run': continue
if key=='rec_phase': continue
fileobject.write('%s%s%s'%(key,'=', pars[key]))
fileobject.write('\n')
fileobject.close()
# reset accumulation:
del accu
if var_key == 'TAU' or var_key == 'D2':
# mono-exponential recovery fit:
try:
xdata = measurements['satrec2_experiment'].get_xdata()
ydata = measurements['satrec2_experiment'].get_ydata()
[amplitude, rate, offset] = fitfunc_recovery(xdata, ydata)
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T1 [s] = ', 1./rate)
# update display for fit:
measurements['satrec2_experiment'].y = func_recovery([amplitude, rate, offset], xdata)
data[measurements['satrec2_experiment'].get_title()] = measurements['satrec2_experiment']
except:
pass
# mono-exponential decay fit to Hahn echoes:
try:
xdata = measurements['hahn_experiment'].get_xdata()
ydata = measurements['hahn_experiment'].get_ydata()
[amplitude, rate] = fitfunc_decay(xdata, ydata)
print 'Mono-exponential fit to Hahn echo decay:'
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T2 [s] = ', 1./rate)
# update display for the fit:
measurements['hahn_experiment'].y = func_decay([amplitude, rate], xdata)
data[measurements['hahn_experiment'].get_title()] = measurements['hahn_experiment']
except:
pass
try:
# mono-exponential decay fit to stimulated echoes:
xdata = measurements['ste_experiment'].get_xdata()
ydata = measurements['ste_experiment'].get_ydata()
[amplitude, rate] = fitfunc_decay(xdata, ydata)
print 'Mono-exponential fit to stimulated echo decay:'
print '%s%02g' % ('Amplitude = ', amplitude)
print '%s%02g' % ('T2 [s] = ', 1./rate)
# update display for the fit:
measurements['ste_experiment'].y = func_decay([amplitude, rate], xdata)
data[measurements['ste_experiment'].get_title()] = measurements['ste_experiment']
except:
pass
# the fitting procedure for satrec:
def fitfunc_recovery(xdata, ydata):
# initialize variable parameters:
try:
# solve Az = b:
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
b = log(abs(mean(ydata[-2:]) - ydata[0:xdata.size/2]))
z = linalg.lstsq(transpose(A), b)
amplitude = exp(z[0][0])
rate = -z[0][1]
except:
amplitude = abs(ydata[-1] - ydata[0])
rate = 1./(xdata[-1] - xdata[0])
offset = min(ydata)
p0 = [amplitude, rate, offset]
# run least-squares optimization:
plsq = leastsq(residuals_recovery, p0, args=(xdata, ydata))
return plsq[0] # best-fit parameters
def residuals_recovery(p, xdata, ydata):
return ydata - func_recovery(p, xdata)
# here is the function to fit
def func_recovery(p, xdata):
return p[0]*(1-exp(-p[1]*xdata)) + p[2]
# the fitting procedure for hahn and ste:
def fitfunc_decay(xdata, ydata):
# initialize variable parameters:
try:
# solve Az = b:
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
b = log(abs(ydata[0:xdata.size/2]))
z = linalg.lstsq(transpose(A), b)
amplitude = exp(z[0][0])
rate = -z[0][1]
except:
amplitude = abs(ydata[0])
rate = 1./(xdata[-1] - xdata[0])
p0 = [amplitude, rate]
# run least-squares optimization:
plsq = leastsq(residuals_decay, p0, args=(xdata, ydata))
return plsq[0] # best-fit parameters
def residuals_decay(p, xdata, ydata):
return ydata - func_decay(p, xdata)
# here is the function to fit:
def func_decay(p, xdata):
return p[0]*exp(-p[1]*xdata)
pass