# -*- coding: iso-8859-1 -*- from xml.etree import cElementTree as ET import time TXEnableDelay = 2e-6 TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0) TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1) ADCSensitivity = 0.5 # voltage span for ADC def experiment(): # CosCos-Stimulated Echos for central excitation # set up acquisition parameters: pars = {} pars['P90'] = 5.3e-6 # 90-degree pulse length (s) pars['SF'] = 95.2e6 # spectrometer frequency (Hz) pars['O1'] = 0 # offset from SF (Hz) pars['SW'] = 5e6 # spectral window (Hz) pars['SI'] = 8*1024 # number of acquisition points pars['NS'] = 32*32*2#*3 # number of scans # multiple of 32 pars['DS'] = 0 # number of dummy scans pars['RD'] = 0.1 # delay between scans (s) (Recycle Delay) pars['TAU'] = 0.014*7 # delay between SatRec and experiment (s) pars['D1'] = 20e-6 # delay after first pulse, or short tau (s) pars['D2'] = 10e-6 # delay after second pulse, or long tau (s) pars['D_PREAQ'] = 5e-6 pars['PHA'] =335 # receiver phase (degree) ### SatRec pars['D3'] = 1e-5 # shortest SatRec delay pars['D4'] = 1e-3 # longest SatRec delay pars["NECH"] = 12 # number of saturation pulse ### pars['DATADIR'] = '/home/fprak/Desktop/' # data directory pars['OUTFILE'] = None # output file name # specify a variable parameter (optional): pars['tp'] = [20e-6,50e-6,90e-6,150e-6,300e-6]#[12e-6, 20e-6, 30e-6, 50e-6, 75e-6, 90e-6, 125e-6, 200e-6] pars['VAR_PAR'] = 'D2' # variable parameter name (a string) start = 20e-6 # starting value stop =0.3 # end value steps = 21 # number of values log_scale = True # log scale flag stag_range = True # staggered range flag # check parameters for safety: if pars['PHA'] < 0: pars['PHA'] = 360 + pars['PHA'] if pars['P90'] > 20e-6: raise Exception("Pulse too long!!!") # check whether a variable parameter is named: var_key = pars.get('VAR_PAR') if var_key == 'P90' and (start > 20e-6 or stop > 20e-6): raise Exception("Pulse too long!!!") # start the experiment: if var_key: # this is an arrayed experiment: if log_scale: array = log_range(start,stop,steps) else: array = lin_range(start,stop,steps) if stag_range: array = staggered_range(array, size = 3) # estimate time by looping once over everything duration = 0 for tp in pars["tp"]: for index, var_par_value in enumerate(array): # assign each var_key the corresponding var_value pars[var_key] = var_par_value # parse state tree e_xml = ET.fromstring(spinal32_experiment(pars, 0).write_xml_string()) # sum up all time=x states for a_state in e_xml.iter("state"): duration += float(a_state.get("time"))*(pars['NS'] + pars['DS']) print duration t = time.localtime(duration) print "\n\nINFO: Experiment will be finnished in: %id %ih %im" % (t.tm_mday-1, t.tm_hour-1, t.tm_min) print "INFO: Experiment will be finnished at: %s\n\n" % (time.ctime(time.time() + duration)) # loop for a variable parameter: for tp in pars['tp']: pars['D1'] = tp for index, pars[var_key] in enumerate(array): print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\ ' out of '+str(len(pars['tp'])*array.size)+': value = ' + str(tp) + ' / '+str(pars[var_key]) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield spinal32_experiment(pars, run) synchronize() else: # estimate the experiment time: seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield spinal32_experiment(pars, run) # the pulse program: def spinal32_experiment(pars, run): e=Experiment() dummy_scans = pars.get('DS') if dummy_scans: run -= dummy_scans pars['PROG'] = 'coscos32_experiment' # phase cycle by F. Qi et al. [JMR 169 (2004) 225-239] with 3rd-phase invertion pars['PH1'] = [270, 270, 270, 270, 90, 90, 90, 90, 270, 270, 270, 270, 90, 90, 90, 90, 180, 180, 180, 180, 0,0,0,0, 180, 180, 180, 180, 0,0,0,0] pars['PH3'] = [270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0] pars['PH4'] = [270, 90, 270, 90, 270, 90, 270, 90, 180, 0, 180, 0, 180, 0, 180, 0, 270, 90, 270, 90, 270, 90, 270, 90, 180, 0, 180, 0, 180, 0, 180, 0] pars['PH2'] = [270, 90, 90, 270, 90, 270, 270, 90, 180, 0, 0, 180, 0, 180, 180, 0, 270, 90, 90, 270, 90, 270, 270, 90, 180, 0, 0, 180, 0, 180, 180, 0] # read in variables: P90 = pars['P90'] SF = pars['SF'] O1 = pars['O1'] RD = pars['RD'] D1 = pars['D1'] D2 = pars['D2'] D3 = pars['D3'] D4 = pars['D4'] D_PREAQ = pars['D_PREAQ'] TAU = pars['TAU'] NECH = pars['NECH'] PH1 = pars['PH1'][run%len(pars['PH1'])] PH3 = pars['PH3'][run%len(pars['PH3'])] PH4 = pars['PH4'][run%len(pars['PH4'])] PH2 = pars['PH2'][run%len(pars['PH2'])] PHA = pars['PHA'] # set sampling parameters: SI = pars['SI'] SW = pars['SW'] # run the pulse program: # saturation: # set variable delay list for saturation pulses: vdlist = log_range(D4, D3, NECH-1) e.wait(RD) # relaxation delay between scans e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse for delay in vdlist[::-1]: e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse # recovery: e.set_phase(PH1) e.wait(TAU-0.5e-6) # wait for tau e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.set_phase(PH3) e.wait(D1-P90-TXEnableDelay-0.5e-6) # 'short tau' e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.set_phase(PH4) e.wait(D2-P90-TXEnableDelay-0.5e-6) # 'long tau' e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.set_phase(PHA) e.wait(D1-P90/2-0.5e-6-D_PREAQ) # 'short tau' e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition # write experiment parameters: for key in pars.keys(): e.set_description(key, pars[key]) # acqusition parameters e.set_description('run', run) # current scan e.set_description('rec_phase', -PH2) # current receiver phase return e