# -*- coding: iso-8859-1 -*- TXEnableDelay = 1e-6 TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0) TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1) ADCSensitivity = 1 # voltage span for ADC def experiment(): # Four-pulse STE sequence (Zeeman order) # set up acquisition parameters: pars = {} pars['P90'] = 4.2e-6 # 90-degree pulse length (s) pars['SF'] = 338.7e6 # spectrometer frequency (Hz) pars['O1'] = -60e3 # offset from SF (Hz) pars['SW'] = 10e6 # spectral window (Hz) pars['SI'] = 1*1024 # number of acquisition points pars['NS'] = 16 # number of scans pars['DS'] = 0 # number of dummy scans pars['RD'] = .5 # delay between scans (s) pars['D1'] = 30e-6 # delay after first pulse, or 'short tau' (s) pars['D2'] = 100e-6 # delay after second pulse, or 'long tau' (s) pars['D3'] = 20e-6 # refocusing pusle delay (s) pars['PHA'] = 124 # receiver phase (degree) pars['DATADIR'] = '/home/fprak/Students/' # data directory pars['OUTFILE'] = None # output file name # specify a variable parameter (optional): pars['VAR_PAR'] = 'D2' # variable parameter name (a string) start = 30e-6 # starting value stop = 2e-0 # end value steps = 24 # number of values log_scale = True # log scale flag stag_range = False # staggered range flag # check parameters for safety: if pars['PHA'] < 0: pars['PHA'] = 360 + pars['PHA'] if pars['P90'] > 20e-6: raise Exception("Pulse too long!!!") # check whether a variable parameter is named: var_key = pars.get('VAR_PAR') if var_key == 'P90' and (start > 20e-6 or stop > 20e-6): raise Exception("Pulse too long!!!") if pars['NS']%8 != 0: pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8 print 'Number of scans changed to ',pars['NS'],' due to phase cycling' # start the experiment: if var_key: # this is an arrayed experiment: if log_scale: array = log_range(start,stop,steps) else: array = lin_range(start,stop,steps) if stag_range: array = staggered_range(array, size = 2) # estimate the experiment time: if var_key == 'D1': seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS']) elif var_key == 'D2': seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS']) elif var_key == 'RD': seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS']) else: seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for a variable parameter: for index, pars[var_key] in enumerate(array): print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\ ' out of '+str(array.size)+': value = '+str(pars[var_key]) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield zeeman4pulses_experiment(pars, run) synchronize() else: # estimate the experiment time: seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield zeeman4pulses_experiment(pars, run) # the pulse program: def zeeman4pulses_experiment(pars, run): e=Experiment() dummy_scans = pars.get('DS') if dummy_scans: run -= dummy_scans pars['PROG'] = 'zeeman4pulses_experiment' # ok 8-step phase cycle (Schaefer et al. J Magn Res A 115 (1995)) pars['PH1'] = [0, 0, 180, 180, 90, 90, 270, 270] # 1st (90-degree) pulse pars['PH3'] = [0, 180, 180, 0, 90, 270, 270, 90] # 2nd (90-degree) pulse pars['PH4'] = [0] # 3rd (90-degree) pulse pars['PH5'] = [90] * 8 + [270] * 8 pars['PH2'] = [90, 270] # receiver # read in variables: P90 = pars['P90'] SF = pars['SF'] O1 = pars['O1'] RD = pars['RD'] D1 = pars['D1'] D2 = pars['D2'] D3 = pars['D3'] PH1 = pars['PH1'][run%len(pars['PH1'])] PH3 = pars['PH3'][run%len(pars['PH3'])] PH4 = pars['PH4'][run%len(pars['PH4'])] PH5 = pars['PH5'][run%len(pars['PH5'])] PH2 = pars['PH2'][run%len(pars['PH2'])] PHA = pars['PHA'] # set sampling parameters: SI = pars['SI'] SW = pars['SW'] while SW <= 10e6 and SI < 256*1024: SI *= 2 SW *= 2 # run the pulse program: e.wait(RD) # relaxation delay between scans e.set_frequency(SF+O1, phase=PH1) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.wait(D1-P90-TXEnableDelay) # short tau e.set_phase(PH3) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.wait(D2-P90-TXEnableDelay) # long tau e.set_phase(PH4) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.wait(D3-P90-TXEnableDelay) # echo delay e.set_phase(PH5) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.wait(TXEnableDelay) e.set_phase(PHA) e.wait(D3+D1-P90/2-TXEnableDelay) # echo delay e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition # write experiment parameters: for key in pars.keys(): e.set_description(key, pars[key]) # acquisition parameters e.set_description('run', run) # current scan e.set_description('rec_phase', -PH2) # current receiver phase return e