# -*- coding: iso-8859-1 -*- TXEnableDelay = 2e-6 TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0) TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1) ADCSensitivity = 2 # voltage span for ADC def experiment(): # Carr-Purcell-Meiboom-Gill (CPMG) experiment # set up acquisition parameters: pars = {} pars['P90'] = 1.7e-6 # 90-degree pulse length (s) pars['SF'] = 338.7e6 # spectrometer frequency (Hz) pars['O1'] = -60e3 # offset from SF (Hz) pars['NS'] = 8 # number of scans pars['DS'] = 0 # number of dummy scans pars['RD'] = 3 # delay between scans (s) pars['NECH'] = 16 # number of 180-degree pulses pars['TAU'] = 40e-6 # half pulse period (s) pars['PHA'] = -127 # receiver phase (degree) pars['DATADIR'] = '/home/fprak/Students/' # data directory pars['OUTFILE'] = None # output file name # specify a variable parameter (optional): pars['VAR_PAR'] = None # variable parameter name (a string) start = 40e-6 # starting value stop = 100e-6 # end value steps = 10 # number of values log_scale = False # log-scale flag stag_range = False # staggered range flag # check parameters for safety: if pars['PHA'] < 0: pars['PHA'] = 360 + pars['PHA'] if pars['P90'] > 20e-6: raise Exception("Pulse too long!!!") # check whether a variable parameter is named: var_key = pars.get('VAR_PAR') if var_key == 'P90' and (start > 20e-6 or stop > 20e-6): raise Exception("Pulse too long!!!") if pars['NS']%4 != 0: pars['NS'] = int(round(pars['NS'] / 4) + 1) * 4 print 'Number of scans changed to ',pars['NS'],'due to phase cycling' # start the experiment: if var_key: # this is an arrayed experiment: if log_scale: array = log_range(start,stop,steps) else: array = lin_range(start,stop,steps) if stag_range: array = staggered_range(array, size = 2) # estimate experiment time: if var_key == 'TAU': seconds = (sum(array)* 2* pars['NECH'] + pars['RD'] * steps) * (pars['NS'] + pars['DS']) elif var_key == 'NECH': seconds = (pars['TAU']* 2* sum(array) + pars['RD'] * steps) * (pars['NS'] + pars['DS']) elif var_key == 'RD': seconds = (pars['TAU']* 2* pars['NECH'] + sum(array)) * (pars['NS'] + pars['DS']) else: seconds = (pars['TAU']* 2* pars['NECH'] + pars['RD']) * steps * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for a variable parameter: for index, pars[var_key] in enumerate(array): print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\ ' out of '+str(array.size)+': value = '+str(pars[var_key]) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield cpmg_experiment(pars, run) synchronize() else: # estimate the experiment time: seconds = (pars['TAU']* 2* pars['NECH'] + pars['RD']) * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield cpmg_experiment(pars, run) # the pulse program: def cpmg_experiment(pars, run): e=Experiment() dummy_scans = pars.get('DS') if dummy_scans: run -= dummy_scans pars['PROG'] = 'cpmg_experiment' # phase lists: pars['PH1'] = [0, 180, 90, 270] # 90-degree pulse pars['PH3'] = [90, 90, 180, 180] # 180-degree pulse pars['PH2'] = [0, 180, 90, 270] # receiver # read in variables: P90 = pars['P90'] P180 = pars['P90']*2 SF = pars['SF'] O1 = pars['O1'] RD = pars['RD'] NECH = pars['NECH'] TAU = pars['TAU'] PH1 = pars['PH1'][run%len(pars['PH1'])] PH3 = pars['PH3'][run%len(pars['PH3'])] PH2 = pars['PH2'][run%len(pars['PH2'])] PHA = pars['PHA'] # set sampling parameters: SI = 128 # number of samples SW = 20e6 # sampling rate AQ = (SI+6)/SW # acquisition window if TAU < (P90+P180)/2+TXEnableDelay or TAU < (P180+TXEnableDelay+AQ)/2: raise Exception('pulse period is too short!') if 2*TAU < P180+TXEnableDelay+SI/SW: raise Exception('pulse period too short!') # run the pulse sequence: e.wait(RD) # delay between scans e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for 90-degree pulse e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse e.wait(TAU-P90/2-P180/2-TXEnableDelay) # wait for tau e.set_phase(PH3) # change phase for 180-degree pulse e.loop_start(NECH) # ----- loop for echoes: ----- e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P180, value=TXEnableValue|TXPulseValue) # apply 180-degree pulse e.set_phase(PHA) # set phase for receiver e.wait(TAU-(P180+TXEnableDelay+AQ)/2) # pre-acquisition delay e.record(SI, SW, timelength=AQ, sensitivity=ADCSensitivity) # acquire echo samples e.wait(TAU-(P180+TXEnableDelay+AQ)/2) # post-acquisition delay e.set_phase(PH3) # set phase for theta-degree pulse e.loop_end() # ---------------------------- # write experiment parameters: for key in pars.keys(): e.set_description(key, pars[key]) # acquisition parameters e.set_description('run', run) # current scan e.set_description('rec_phase', -PH2) # current data route return e