The DAMARIS Script Library

Version 1.0, June 2015

Compiled by Oleg V. Petrov AG Vogel @ Technische Universität Darmstadt The DAMARIS Script Library: A User's Guide

v1.0 June 2015

By Oleg V. Petrov

The group of Prof. Michael Vogel @ Technical University of Darmstadt

Please report comments and errors to: oleg@nmr.physik.tu-darmstadt.de

Contents

1. Introduction	3
2. The script layout	
2.1. Experiment scripts	6
2.2. Result scripts	11
3. Data handling	16
4. Composite scripts	17
5. The scripts in alphabetical order	
5.1. CPMG	18
5.2. FID	19
5.3. FID with Background Suppression	21
5.4. Hahn Echo	22
5.5. Miscellaneous	23
5.6. Saturation Recovery	24
5.7. Saturation Recovery with Solid Echo Detection	26
5.8. Solid Echo	28
5.9. Spin Alignment	30
5.10. Spin Alignment Spin-3/2	32
5.11. Steady Gradient Spin Echo	33
5.12. Steady Gradient Spin Echo with CPMG Detection	34
5.13. Stimulated Echo	37
5.14. T_{1Q}	39
5.15. Zeeman Order	41
5.16. ZZ-Exchange with T_2 -Selection	43
6. Concluding remarks	45

1. Introduction

This manual describes pulse programs and basic parameter setups for the NMR experiments compiled in The DAMARIS Script Library. The library is intended primary to comply with the tasks performed in the group of Prof. Michael Vogel's at TUD, though it might be of interest to other groups carrying out like experiments. It currently includes 16 scripts (by June 2015), beginning with the basic pulse-acquire sequence and ending with pseudo-2D experiments to measure kinetics under slow exchange (Table 1).

The very concept of DAMARIS and how to program with this NMR software can be found at element.fkp.physik.tu-darmstadt.de/damaris_cms/.Briefly saying, to set up an NMR experiment with DAMARIS means to provide two scripts. One is called an experiment script (the module *_exp.py). It accommodates in turn two functions: one has a pre-defined name experiment() and serves to drive a pulse program; the other, with an arbitrarily name, e.g. fid_experiment(), defines the pulse program which is called from within experiment(). Certainly, the *_exp.py module may include more functions, but these two are usually all what you need to run a particular experiment. The second script is called a result script (the module *_res.py). It provides processing routines for the incoming signal and displays the signal and whatever measurements performed on it. It includes a function with pre-defined name result() and may hold some auxiliary functions, e.g. for data fitting and signal transforms. The scripts are written in the Python programming language (hence the extension .py), using DAMARIS frontend classes (Experiment, ADCResult, Accumulation, MeasurementResult, etc.).

The experiment and result modules are loaded in separate DAMARIS' tabs. Communication between them is implemented via a parameter description routine. Namely, a dictionary consisting parameter's key-and-value pairs is created within the experiment script by the command set_description_and available in the result script by the get_description_dictionary command. Also, there are number of 'getters' implemented as DAMARIS classes' methods to gain access to specific signal's attributes (such as the actual sampling rate) and signal's bounds.

The DAMARIS framework has much in common with Bruker's Minispec where the whole NMR experiment, from setting acquisition parameters to measuring on the incoming signal, is programmed in one script. Who has experience with Minispec will therefore find himself amid familiar surroundings when working with DAMARIS. It may seem foreign, however, to those who are accustomed to Bruker's XWINNMR/TopSpin or Oxford Instruments' RINMR software, where setting parameters, programming pulse sequences and writing AU-programs for automatic performance are done separately and take different places. To provide a certain degree of consistency, I put emphasis in the present DAMARIS scripts on those elements that resemble the

way that commercial NMR software is organized. For example, although DAMARIS does not use such a thing as a parameter table, the scripts share a common parameter namespace throughout, all the parameters being stored in one variable pars and specified in one place in the beginning of experiment(). For another example, all pulse programs are designed to be self-sufficient in the sense that they are independent from their driver (the experiment() function) as long as an appropriate pars dictionary is provided and that they are not intended to be modified by the user in the course of experiment.

In the next chapter, I describe a general plan of the scripts and those elements that they have in common. Then each script will be discussed particularly, and results of test measurements will be provided.

Table	1.	A	list	of	scripts
-------	----	---	------	----	---------

Folder's name	Scripts' names	Comments
СРМG	op_cpmg_exp.py op_cpmg_res.py	Carr-Purcell-Meiboom-Gill sequence, to measure T_2
FID	op_fid_exp.py op_fid_res.py	The basic pulse-acquire experiment
FID_with_Background_Suppression	op_zgbs_exp.py op_zgbs_res.py	The pulse-acquisition with a background signal reduction
Hahn Echo	op_hahn_exp.py op_hahn_res.py	90_x -180 _x spin-echo
Miscellaneous	op_gs_exp.py op_gs_res.py	The pulse-acquisition in a loop (no accumulation)
Satuaration_Recovery	op_satrec_exp.py op_satrec_res.py	Saturation-recovery experiment, to measure T_1
Saturation_Recovery_with_Solid_Echo_Detection	op_satrec2_exp.py op_satrec2_res.py	Saturation-recovery with SE detection (for short FID's)
Solid_Echo	op_solidecho_exp.py op_solidecho_res.py	90_x - 90_y spin-echo
Spin_Alignment	op_spinal_exp.py op_spinal_res.py	Spin-echo after quadrupolar order during t_m (for spins-1)
Spin_Alignment_Spin32	op_spinal32_exp.py op_spinal32_res.py	Spin-echo after quadrupolar order during t_m (for spins-3/2)
Steady_Gradient_Spin_Echo	op_sgse_exp.py op_sgse_res.py	STE-based diffusiometry in a steady gradient (SGSE)
Steady_Gradient_Spin_Echo_with_CPMG_Detection	op_sgse2_exp.py op_sgse2_res.py	SGSE with CPMG readout (to enhance SNR)
Stimulated_Echo	op_ste_exp.py op_ste_res.py	The basic STE experiment
TIQ	op_tlq_exp.py op_tlq_res.py	To measure a quadrupolar order relaxation (T_{1Q})
Zeeman_Order	op_zeeman_exp.py op_zeeman_res.py	Spin-echo after Zeeman order during t_m (spin-1)
ZZ_Exchange_with_T2_Selection	op_t2zz_exp.py op_t2zz_res.py	Z-magnetization build-up after T_2 relaxation via chemical exchange

2. The script layout

2.1. Experiment scripts

In the very beginning of an experiment script, I specify hardware-related parameters such as TTL-lines that control a RF transmitter, the transmitter enabling delay, and ADC sensitivity (Fig. 1, lines 3-6). Since these parameters relate to the NMR hardware configuration rather than to the NMR experiment proper, I have chosen to place them outside the experiment () function. Most likely, this is the only part of the script that might have to be changed when porting between spectrometers.

Next comes the function experiment () with acquisition parameters initialization in first few lines (Fig. 1, lines 12-24). In the example script, there are 13 such parameters: 11 for running a pulse program and 2 to specify whether and where to save data. All acquisition parameters are stored in the dictionary pars under names (mainly borrowed from commercial NMR systems) written in upper-case to distinguish them from other scripts' variables. To add a new parameter, say XYZ, you simply type pars ['XYZ']=value. You can choose one parameter to be variable to allow for so-called arrayed experiment (as in Varian-Chemagnetic's Spinsight). In the example script, the parameter D2 is chosen to vary from 30 us to 2 s through the array of 24 log-spaced values (lines 27-32).

Next, the pars values are checked for safety (lines 35-48). In particular, one pays attention to the r.f. pulse length (don't go burn anything) and makes sure that the number of scans is a multiple of the number of steps in the phase cycle used.

Then it comes to calling a pulse-program function. The way it is called depends on whether a variable parameter has been named. If yes (meaning it is an arrayed experiment), the pulse-program function is called in two nested loops. The inner loop is for signal accumulation and it runs the number of scans specified by the values NS plus DS, all parameters being fixed except for pulse phases (see below). The outer loop runs for a variable parameter. The latter takes on values preliminary calculated and arrayed according to the variable parameter settings (Fig. 1, lines 51-59). If no variable parameter is named (meaning it is a one-time experiment with all-fixed parameters), only the loop for signal accumulation is run. In either case, the total experiment time is calculated and output in the log tab (Fig. 1, lines 62-72, 85-88).

The pulse-program function (named spinal_experiment() in the example script) takes two arguments. One is pars and the other is a current run of the accumulation loop. In the beginning of the function, a DAMARIS' Experiment object is created (Fig.1, line 97). Methods of this class serve as hardware configuration commands in the pulse sequence (Fig. 1, lines 134-154). Prior to applying the commands, one works a little longer on acquisition parameters. Thus, to deal with dummy scans (those which are not for accumulation), the DS value is subtracted from run, so that

the signal is not accumulated (on the result script's side) until the run become non-negative again. Here one also specifies phase lists for r.f. pulses and a receiver, which will complete the parameters setup (lines 106-109). The phase lists are the property of the pulse program and, as such, are not intended to be modified during experiment. For this reason, they are separated from the rest of pars set in the experiment (). Note that the name PH2 is reserved for the receiver phase list.

The pars are read in local variables before passing to the pulse sequence commands (lines 112-124), for two reasons. First, aesthetic, is to avoid bulky expressions with constructions like pars ['XYZ'] in the commands. Second is to calculate dependent parameters and adjust them for optimum performance. Thus, in lines 120-123, the phase lists are indexed according to the current run. And in lines 127-131, the ADC sampling rate and the number of samples are maximized, in synchrony, for digital filtering purposes (see below).

After the pulse sequence commands, all pars, the current run, and the receiver phase rec_phase are written in the parameter description dictionary and passed to a result script (lines 157-160). In the end, the pulse-program function returns the configured Experiment object to DAMARIS for execution (line 162).

	TXEnableDel	ay = 2e-6	
	TXEnableVal	ue = 0b0001 # TT	
	ADCSensitiv	ity = 2	
	dei experim	<pre>went(): # Jeener-E</pre>	
	pars = pars['P		
	pars['S		
	pars['0		
	pars['S	[I'] = 1*512	
	pars['N		
	pars['D pars['R	(S'] = 0 (D'] = 3	
	pars['D		
	pars['D	2'] = 100e-6	
	pars['D		
	pars['0	UTFILE'] = None	
	pars['V		
	start =	30e-6	
	steps =	24	
	log_sca	le = True	
	stag_ra	inge = ralse	
	if pars	<pre>['PHA'] < 0: =['PHA'] = 360 +</pre>	ners['DH}']
	if pars	['P90'] > 20e-6:	
		se Exception("Put	
	var_xey if var	<pre>kev == 'P90' and</pre>	(start > 20e-6 or stop > 20e-6):
	rai		
	if nars	:['NS']*8 != 0:	
	par par	s['NS'] = int(rou	nd(pars['NS'] / 8) + 1) * 8
		nt 'Number of scs	ns changed to ', pars['NS'], ' due to phase cycling'
	if var_	key:	
		his is an arrayed log scale:	
		array = log_rang	e(start,stop,steps)
	els	e: arrav = lin rano	e(start.ston.stens)
		array rin_rang	
		stag_range:	
		array - staggere	(range (array, size - 2)
		var_key == 'D1': seconds = (sum(s	rrav)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
		f var_key == 'D2'	
	eli	seconds = (sum(s f var kev == 'RD'	<pre>irray) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS']) :</pre>
7		seconds = (sum(a	rray) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS'])
		e: seconds = (naref	'D1']*2 + pars['D2'] + pars['RD']) * steps * (mars['NS']+ pars['DS'])
		s = divmod(second	s, 60)
	h,	m = divmod(m, 60)	0241 & (Prepriment time estimated) b y al
	pri	10 - 484020:4020:4	oza (experiment time estimated: , n, m, s)
			e parameter:
	tor	print 'Arrayed e	<pre>key] in enumerate(array): xperiment for '+var key+': run = '+str(index+1)+\</pre>
			' out of '+str(array.size)+': value = '+str(pars[var_key])
		# loop for accum	ulation: e(mars[!NS!]imars[!DS!]).
		yield spinal	_experiment (pars, run)
		synchronize()	
	else:		
	sec m.	onds = (pars['D1' s = divmod(second]*2 + pars['D2'] + pars['R0']) * (pars['N3']+ pars['D3']) s, 60)
		m = divmod(m, 60)	
		nt '%s%02d:%02d:%	
		run in xrange(pa	rs['NS']+pars['DS']):
		yieid spinal_exp	er ment (pars, fun)
4			

Fig. 1. The experiment script op_spinal_exp.py (the spin-alignment experiment)

Fig. 1 (cntd). The experiment script op_spinal_exp.py (the spin-alignment experiment)

Fig. 2. Flowchart of an experiment scripts

2.2. Result scripts

The central (and often the only) component of a result script is a pre-defined function result(). Its principle job is to extract the incoming signals buffered in results into a current-scan container timesignal and accumulate them in accu after first phasing according to the scan's settings. The settings are available as timesignal's attributes which are read in by get_description_dictionary() and other getters (Fig. 2, lines 25 and 30).

Even before phasing, timesignal is subject to digital filtering to improve signal-to-noise ratio. The digital filtering is introduced, by default, to all experiments but CPMG. It is realized in three steps. First, the NMR signal is oversampled (on the experiment script's side) to take as much noise as possible out of the spectral window requested by the user (the parameter SW) by minimizing Nyquist fold-backs. Then, a low-pass finite impulse response (FIR) filter is applied to remove the noise components above SW. Finally, the filtered signal is re-sampled down according to the originally requested SW. In commercial NMR systems, digital filtering is implemented on the hardware level by using a signal processor which performs FIR filtering "on the fly" during the signal acquisition. In DAMARIS, it is a post-acquisition procedure. FIR filtering means that each value of the output signal is constructed as a weighed sum of N most recent samples of the input signal, where N is the filter order. It means, in turn, that very first N-1 samples become corrupted compared to the rest of the signal and therefore are to be discarded. To keep the required number of samples (parameter SI), I set those N-1 samples to zero and shift the whole signal to the left so that the zeros appear in the end of the signal (to be joining zeroes appended in zero-filling procedure if applied). For the default N = 29 and the actual dwell time 0.05-0.1 us, the digital filtering consumes first 1.4-2.8 us of the signal. This consumption (called GroupDelay in RINMR and DEAD2 in XWINNMR/TopSpin) must be accounted for when positioning a signal acquisition onset.

The phasing, or digital rotation, of timesignal is controlled by a special parameter rec_phase coming amid pars from the experiment script. This parameter is a current PH2 value but taken with an opposite sign (see Fig. 1, line 160). The rotation is performed with a DAMARIS' method phase() (Fig. 2, line 69). The phase-rotated timesignal is output in the Display tab (line 72) under the name Current Scan.

After being filtered and phased, timesignal is accumulated in accu. Unlike measurement, the accu is a local variable which is reset every time when a variable parameter (if any) is updated (lines 75-76 and 164). The accu is refreshed in the Display tab after each new scan.

Once all scans requested by the user (parameter NS+DS) are done, the script proceeds with signal processing. In most cases, it includes FFT (Fig. 2, line 103) followed by a 'first-order phasing' of the resultant spectrum (line 106). To rotate spectrum, the initial phase phi0 of

accu is calculated (line 94). (The phi0 value is printed in the Log tab and thus can be used to maximize a Re-signal by its adding to PHA.) For the FFT purpose, accu is also weighted with exponential window function (line 102) and, following a standard practice, filled with zeroes to double its dimension. If it is an arrayed experiment, the next bit of the script will perform a required measurement on either accu or spectrum and plot it against a variable parameter. In the example script, the intensity of the Re-component of accu is measured against the mixing time D2. The intensity is defined as either the sum of samples within the time interval given by measurement range (lines 121-123) or the sum of first 32 samples (line 126).

In the end of result(), data from accu and the acquisition parameters used are written in files, according to the OUTFILE value. The acquisition parameters are saved in a text file *.par, while for the data there is a choice between a SIMPSON (text) file *.dat and a Tecmag (binary) file *.tnt. Both formats are readable by NMRnotebook, the NMR processing program installed on our DAMARIS spectrometer PC's. More about data handling is explained in the next section. After the data saving, accu is deleted (line 164) but the data remain in the Display tab. The above steps are repeated for each variable parameter's value, the data being saved separately.

Once all variable parameter's values are taken, or the experiment is interrupted by pressing the Stop button, the script continues outside result() to perform post-measurement tasks, such as data fitting (lines 167-178). Presently, only mono- or stretched-exponential fit with automatically assigned initial values are implemented. The auxiliary functions for fitting and other possible tasks are placed in the end of the script (lines 181, 202, 206). And necessary Python libraries such as numpy, scipy.signal, scipy.optimize, os are inserted at the top of the script (Fig. 2, lines 3-6).

Fig. 3. The result script op_spinal_res.py (the spin-alignment experiment)

Fig. 3 (cntd). The result script op_spinal_res.py (the spin-alignment experiment)

Fig. 4. Flowchart of a result script

3. Data handling

The DAMARIS does not provide an interactive GUI for data processing. Hence, there is a demand for porting data into other processing tools. By default, the DAMARIS stores data in a binary HDF format in the data pool file specified in the Configuration tab, wherefrom the data can be imported to an appropriate program for data analysis. The HDF data are accessible in the Python environment by means of pyTables module or with the Java program HDFView. A new HDF file is created each time the dictionary data[] is updated. Another option built in DAMARIS is saving data in a text format using the Save As Text button in the Display tab.

DAMARIS frond-end classes have few methods for in-line data writing within a result script, which are: write_to_csv, write_to_hdf, write_to_simpson, and write_to_tecmag.

The write_to_simpson has been chosen to be a default method in the present library, for using it with the NMR processing program NMRnotebook installed on our DAMARIS spectrometers' PC's. The SIMPSON file is a two-column text file – one column for Re and one for Im data – with a little header that reports the number of acquisition points, sampling rate and reference frequency (Fig. 5). The write_to_simpson method takes one necessary argument – the path to the file as specified by the parameters DATADIR and OUTFILE, and two optional keyword arguments – a data delimiter (by default "") and a reference frequency (by default 100e6). The data file gets the extension . dat. Another text file with the extension .par is created to store experiment's parameters.

SIMP
NP=4096
SW=10000000
REF=100000000
TYPE=FID
DATA
459.898 15.5824
459.842 15.7662
460.055 16.6051
0 0
0 0
0 0
0 0
END

Fig. 5. A SIMPSON data file.

The write_to_tecmag method is intended primary for 2D experiments. You can find snippets with this method commented out next to write_to_simpson (e.g. Fig. 3, lines 146-148). It takes two required keyword arguments – the path to the file and the number of records (2nd data dimension), and few optional arguments – a reference frequency (frequency, by default 100e6), last inter-scan delay (last_delay, by default 1), receiver phase (receiver_phase, by default 0), and the nucleus observed (nucleus, by default '1H'). The binary Tecmag files (.tnt) are readable by NMRnotebook too and can be imported by many other NMR data processing software let alone the native NTNMR on our Tecmag spectrometer.

4. Composite scripts

A special issue which has not been yet discussed is how to run several experiments sequentially within one script. The way in which DAMARIS jobs are executed allows for concatenation of experiments simply by copying and pasting them in one greater experiment() function, one after another. No modifications will be needed in the scripts' code unless you want for such a composite function to report the total acquisition time. Once you press the Start button, you will see in the Log page the time reported for the first experiment only and thus have to wait for the next such report until the first experiment is over. To change this behavior will require a substantial modification of the original scripts and will make individual experiment settings depend on one another, which I dislike. So I decided to bear with this shortcoming for the possibility to combine experiments in a simple copy-and-paste manner. What you still might want to change in the composite experiment() is to enclose the individual experiments' code with if-statements and use corresponding True and False controls in the beginning of experiment() for switching them on and off.

On the result script's side, I use a variable the_experiment to identify the current experiment and to control the way a result is treated. The variable takes the name of the pulse program that is stored in the parameter pars['PROG'] (assigned locally within program functions). Usually, there is no need to discriminate between experiments until it comes to measuring the signal vs. variable parameter. Then the_experiment is checked to determine how to measure the signal intensity and which fitting function to call. For this purpose, separate MeasurementResult objects are created, one for each experiment, and put in a common dictionary measurements. The experiment names serves as the dictionary's keys so that you can index it with the_experiment. Whenever a new experiment is added, you just append an entry with a new experiment's name to measurements and specify either or both measurement and fitting procedure for this new experiment in a proper place below. That will be all.

In the folder AU-Programs, you can find two examples of such composite scripts: one for diffusiometry, which comprises saturation-recovery with solid-echo detection, hahn echo and stimulated echo experiments, and one for experiments we typically run when measuring on deuterons, which includes saturation-recovery with solid-echo detection, solid echo, spin-alignment, and Zeeman order experiments.

5. The scripts in alphabetical order

5.1. CPMG

Carr-Purcell-Meiboom-Gill (CPMG) echo train acquisition

File names: op_cpmg_exp.py, op_cpmg_res.py

Applications: single-shot measurement of T_2 with minimized diffusion effect; measuring the line shapes of very broad lines; signal detection in strong gradients.

Pulse sequence: $90_x^{\circ} - [\tau - 180_y^{\circ} - \tau - Acq]_n$

Phase cycle:	step:	1	2	3	4
	$arphi_{90}$	0	180	90	270
	$arphi_{180}$	90	90	180	180
	φ_{rec}	0	180	90	270

(minimizes the effect of imperfect 180°-pulses; cancels DC offset; averages channel imbalance)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
NS	Number of scans	≥ 4
DS	Dummy scans	0
RD	Recycle delay	3-5 <i>T</i> ₁
NECH	Number of 180° pulses	many
TAU	Half period of 180° pulses	$\geq 40 \ \mu s$
РНА	Receiver phase	to maximize Re

Comments: 128 samples are acquired from each echo at the 20 MHz rate. The acquisition interval accommodates 6 extra samples, for technical reasons. By default, the echo intensity is measured on Re-channel, as the sum of the samples where the first echo exceeds 10% of its maximum ("noise level"). Alternatively, it can be the sum of all samples or just a middle point of the echo. The echo decay (T_2 -decay) is fitted with a mono-exponential function.

5.2. FID

The basic pulse-acquire experiment

File names: op_fid_exp.py, op_fid_res.py

Applications: Free-induction signal acquisition; spectroscopy

Pulse sequence: $90^{\circ} - Acq$

Phase cycle:	step:	1	2	3	4
	$arphi_{90}$	0	180	90	270
	φ_{rec}	0	180	90	270

(standard CYCLOPS: cancels DC offset & averages channel imbalance)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window, or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 4
DS	Dummy scans	0-2
RD	Recycle delay	3-5 <i>T</i> ₁
DEAD1	Pre-acquisition delay for NMR coil ringing	5-10 μs
PHA	Receiver phase	arbitrary

Comments: The time signal intensity is measured vs variable parameter as a sum of first few samples in the Re-channel. Prior to these measurements, the time signal is phase-corrected by the value calculated from the first FID in the array.

Example: FID and spectrum of ¹⁹F in a mono-crystal of LaF₃+5% SrF₂, at room temperature. Parameters of the experiment: P90 = 1.7 us, SW= 200 kHz, SI= 126, RD = 3 s, DEAD1 = 5 us, NS= 8, SF = 338.7 MHz (spectrometer Birgit). Certainly, the 'zero-order phase correction' implemented in op_fid_res.py will not do for such a broad spectrum as of LaF₃, so that an interactive phasing with third-party software is required.

5.3. FID with Background Suppression

The FID experiment with a composite 90°-pulse for background suppression

File names: op_zgbs_exp.py, op_zgbs_res.py

Applications: To suppress signals from the probe's parts near the NMR coil and the cables that contain the nuclei being observed.

Pulse sequence: $[90^{\circ} - 180^{\circ} - 180^{\circ}] - Acq$

Phase cycle (from the Bruker pulse program "zgbs"):

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	0	0	0	90	90	90	90	180	180	180	180	270	270	270	270
$arphi_{180}$	0	90	180	270	0	90	180	270	0	90	180	270	0	90	180	270
$arphi_{180}$	0	0	0	0	180	180	180	180	270	270	270	270	90	90	90	90
φ_{rec}	0	180	0	180	90	270	90	270	0	180	0	180	90	270	90	270

Acquisition parameters: same as in the FID experiment

Comments: The pulse sequence is due to Cory and Ritchey [JMR, 80, 128 (1988)]

5.4. Hahn Echo

Two-pulse Hahn echo acquisition

File names: op_hahn_exp.py, op_hahn_res.py

Applications: T₂-relaxometry; diffusiometry; signal filtering

Pulse sequence:
$$90_x^\circ - \tau - 180_x^\circ - \tau - Acq$$

Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	180	0	180	90	270	90	270
	$arphi_{180}$	0	0	180	180	270	270	90	90
	φ_{rec}	0	180	0	180	90	270	90	270

(CYCLOPS & cancellation of *z*-component of signal present after 180°-pulse)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window, or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
RD	Recycle delay	3-5 <i>T</i> ₁
DEAD1	Pre-acquisition delay for NMR coil ringing	4-10 μs
РНА	Receiver phase	arbitrary

Comments:

5.5. Miscellaneous

"Go-setup" experiment

File names: op_gs_exp.py, op_gs_res.py

Applications: Interactive adjustment of acquisition parameters and shimming

Pulse sequence: $90^{\circ} - Acq$

Phase cycle: None

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SW	Sampling rate	up to 20 MHz
SI	Number of acquisition points	256-16k
RD	Recycle delay	1 s
DEAD1	Pre-acquisition delay for NMR-coil ringing	5-10 μs

Comments: Nonstop pulse-acquisition without accumulation. Three measurements are reported after each shot: FID amplitude, spectrum integral and spectrum middle frequency (center of gravity).

5.6. Saturation-Recovery

Saturation-recovery experiment

File names: op_satrec_exp.py, op_satrec_res.py Applications: T_1 relaxometry; T_1 -weighted FID acquisition Pulse sequence: $[90^\circ - \text{var }\Delta]_n - \tau - 90^\circ - Acq$ Phase cycle: step: $1 \ 2 \ 3 \ 4$ $\varphi_{90} \ 0 \ 0 \ 0 \ 0$

	1,20				
(CYCLOPS)	$arphi_{90}$	0	180	90	270
	φ_{rec}	0	180	90	270

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window, or spectrum width	1 - 10 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 4
DS	Dummy scans	0
TAU	Delay for recovery	up to $5 \times T_1$
DEAD1	Pre-acquisition delay for NMR coil ringing	5-10 μs
РНА	Receiver phase	arbitrary
NECH	Number of saturation pulses	20-40
D1	First interval in saturation pulse train	100 ms
D2	Last interval in saturation pulse train	100 µs

Comments: The saturation sequence comprises up to 40 pulses with logarithmically decreasing intervals from 100 ms down to 100 μ s. The FID amplitude is measured against a variable parameter (usually TAU) as a sum of few first samples in Re-channel. For the best performance, maximize Re by adjusting PHA and set SW high enough to make sure that the samples taken are all positive. If it is TAU that varies, the recovery curve is fitted with mono-exponential function.

Example: T_1 -relaxation of ¹⁹F in a mono-crystal of LaF₃+5% SrF₂, at room temperature. Parameters of the experiment: P90 = 1.7 us, SW= 10 kHz, SI= 1024, DEAD1 = 15 us, NS= 8, SF =

338.7 MHz (spectrometer Birgit), TAU is varied from 1 ms to 30 s. The red line is a monoexponential fit with T_1 =0.89 s.

5.7. Saturation-Recovery with Solid-Echo Detection

Saturation-recovery with two-pulse solid echo acquisition

File names: op satrec2 exp.py, op satrec2 res.py

Applications: T_1 relaxometry on solid samples; acquisition of T_1 -weighted echo signals

Pulse sequence:
$$[90_x^\circ - \operatorname{var} \Delta]_n - \tau - 90_x^\circ - t_e - 90_y^\circ - t_e - Acq$$

Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	0	0	0	0	0	0	0
	$arphi_{90}$	0	180	0	180	90	270	90	270
	$arphi_{90}$	90	90	270	270	0	0	180	180
	φ_{rec}	0	180	0	180	90	270	90	270

(from Tecmag program: CYCLOPS & cancellation of z-component present before the 3rd pulse)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window, or spectrum width	1 - 10 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
TAU	Delay for recovery	up to $5 \times T_1$
D3	Echo pulse interval	10-20 µs
D4	Echo pre-acquisition delay	0 or \pm few μ s
РНА	Receiver phase	arbitrary
NECH	Number of saturation pulses	20-40
D1	First interval in saturation pulse train	100 ms
D2	Last interval in saturation pulse train	100 µs

Comments: The saturation sequence comprises up to 40 pulses with logarithmically decreasing intervals from 100 ms down to 100 μ s. The solid echo is acquired with the echo delay (parameter D3), usually set as short as the receiver dead time, starting from the top of the echo. It might be necessary to vary the echo pre-acquisition delay D4 to localize the echo maximum. The echo amplitude is measured the same way as FID in 4.6.

Example: T_1 -relaxation of ¹⁹F in a mono-crystal of LaF₃+5% SrF₂, at room temperature. Parameters of the experiment: P90 = 1.7 us, SW= 10 kHz, SI= 1024, D3 = 20 us, NS= 8, SF = 338.7 MHz (spectrometer Birgit). TAU is varied from 1 ms to 30 s. The red line is a mono-exponential fit with T_1 =0.91 s.

5.8. Solid Echo

Two-pulse solid (quadrupole) echo acquisition

File names: op_solidecho_exp.py, op_solidecho_res.py

Applications: acquisition of solid-state spectra free of receiver's dead time artifacts

Pulse sequence: $90_x^{\circ} - t_e - 90_y^{\circ} - t_e - Acq$

Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	180	0	180	90	270	90	270
	$arphi_{90}$	90	90	270	270	0	0	180	180
	φ_{rec}	0	180	0	180	90	270	90	270

(from Tecmag's program: CYCLOPS & cancellation of *z*-component present after 1st pulse)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window, or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
TAU	Echo delay	10-20 μs
D4	Echo pre-acquisition delay	\pm few μ s
РНА	Receiver phase	arbitrary

Comments: The solid echo is acquired with the echo delay (parameter TAU) that is usually set as short as the receiver dead time. The acquisition starts from the top of the echo, which is positioned by varying D4.

Example: ²H spectrum of hexamethylbenzene- d_{18} , at room temperature (spectrometer Eis). Parameters of the experiment: SF = 46.704 MHz; P90 = 2.5 us; TAU = 20 us; SW = 200 kHz; SI = 256; RD=0.5 s; NS = 8

5.9. Spin Alignment

Stimulated spin-echo after storing in a quadrupolar order (Jeener-Broekaert echoes)

File names: op_spinal_exp.py, op_spinal_res.py

Applications: studying slow molecular motion in solids (probing sin-sin correlation function)

Pulse sequence:
$$90_x^\circ - t_p - 45_y^\circ - t_m - 45_y^\circ - t_p - Acq$$

Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	270	0	270	90	90	180	180
	$arphi_{45}$	90	180	90	180	180	180	90	90
	$arphi_{45}$	90	90	270	270	180	0	0	180
	φ_{rec}	0	180	180	0	90	270	90	270

(suppresses single- (SQ) and double-quantum (DQ) coherences present after the second pulse; cancels T_1 -recovered magnetization; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1^{st} pulse (t_p)	10-100 μs
D2	Delay after the 2^{nd} pulse (t_m)	from μ s to T_1
PHA	Receiver phase	arbitrary

Acquisition parameters:

Comments: Not applicable to spins-3/2 and up. Typical use is to measure intensity of the echo arising at D1 after the last pulse while varying D2. The intensity is measured from few first samples in Re-channel. To maximize Re, PHA is adjusted with a reference phase phi0 obtained from the experiment with the shortest D2. The first pulse interval D1 (or t_p) is usually kept as short as the receiver dead time, though a maximum echo is achieved at D1 ~ $(2\delta)^{-1}$, where δ is a quadrupolar/dipolar spectrum width. It is not so important to stay precisely at the top of the echo as the experiment is not intended for line shape analysis (nevertheless the processing part does include

FFT). In the end of the measurement "echo vs D2", the result script performs a KWW (stretched exponential) fit to the data.

Example: ²H STE decay in hexamethylbenzene- d_{18} , at room temperature (spectrometer Eis). Parameters of the experiment: SF = 46.704 MHz; P90 = 2.3 us; D1 = 30 us; RD=0.5 s; NS = 32. The red line is a mono-exponential fit.

5.10. Spin Alignment: Spin-3/2

Stimulated spin-echo after storing in a quadrupolar order (Jeener-Broekaert echoes). The only difference from 4.9 is in the phase cycle.

File names: op_spinal32_exp.py, op_spinal32_res.py

Applications: studying slow molecular motion in solids (probes sin-sin correlation function)

Pulse sequence: $90_x^\circ - t_p - 45_y^\circ - t_m - 45_y^\circ - t_p - Acq$

Phase cycle: [based on Qi et al., JMR 169 (2004) 225-239]

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	180	0	180	90	270	90	270	90	270	90	270	180	0	180	0
$arphi_{45}$	90	90	270	270	0	0	180	180	180	180	0	0	90	90	270	270
$arphi_{45}$	0	0	0	0	180	180	180	180	90	90	90	90	270	270	270	270
φ_{rec}	180	0	0	180	180	0	0	180	270	90	90	270	270	90	90	270

(suppresses SQ, DQ and triple-quantum (TQ) coherences present after the 2^{nd} pulse; cancels T_1 -recovered magnetization; CYCLOPS)

Acquisition parameters: same as for 4.9

Comments: Suitable for spins-3/2. The phase cycle is made twice as long compared to spinalignment sequence 4.9 for spins-1 to cancel the triple-quantum coherence arising after the second pulse.

Example: ⁷Li STE decay in a $Li_2Ti_3O_7$ poly-crystallite sample, at room temperature (spectrometer Birgit). Parameters of the experiment: SF = 139.9 MHz; P90 = 1.8 us; D1 = 60 us; RD = 25 s; NS = 32. The red line is a stretched-exponential (KWW) fit.

5.11. Steady Gradient Spin Echo

Stimulated echo-based measurements of diffusion in a static magnetic field gradient

File names: op_sgse_exp.py, op_sgse_res.py

Applications: diffusiometry

Pulse sequence: $90_x^{\circ} - t_p - 90_x^{\circ} - t_m - 90_x^{\circ} - t_p - Acq$

Phase cycle: [due to Hürlimann and Venkataramanan, JMR 157, 31 (2002)]

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	180	0	180	0	180	0	180	90	270	90	270	90	270	90	270
$arphi_{90}$	0	0	180	180	0	0	180	180	0	0	180	180	0	0	180	180
$arphi_{90}$	0	0	0	0	180	180	180	180	0	0	0	0	180	180	180	180
φ_{rec}	0	180	180	0	180	0	0	180	270	90	90	270	90	270	270	90

(suppresses SQ coherences present after the second pulse; cancels T_1 -recovered magnetization; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 16
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1 st pulse (t_p)	10-30 µs
D2	Delay after the 2^{nd} pulse (t_m)	from few μ s to T_1
PHA	Receiver phase	arbitrary

Acquisition parameters:

Comments: The scripts for this experiment are identical to Stimulated Echo (see 4.13). The only difference is in measurement of the echo intensity. Namely, due to an intrinsically poor SNR and short FID, all echo samples above the noise level are taken and added up. When D2 is varied (a usual scenario), the echo decay is fitted with mono-exponential function.

Example: (Upper) ¹H STE in tap water, in a static field gradient of ... T/m (spectrometer Magnex). Parameters of the experiment: P90 = 0.7 us, SF = 91.183 MHz, SW = 20 MHz, SI = 1024, NS = 16, RD = 4 s, D1 = 20 us, D2 = 30 us, room temperature. (Lower) STE intensity as a function of D2.

5.12. Steady Gradient Spin Echo with CPMG Detection

Stimulated-echo sequence followed by a CPMG readout of the signal

File names: op_sgse2_exp.py, op_sgse2_res.py

Applications: diffusiometry

Pulse sequence: $90_x^{\circ} - t_p - 90_x^{\circ} - t_m - 90_x^{\circ} - t_p - [t_e - 180_y^{\circ} - t_e - Acq]_n$

Phase cycle: [due to Hürlimann and Venkataramanan, JMR 157, 31 (2002)]

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	180	0	180	0	180	0	180	90	270	90	270	90	270	90	270
$arphi_{90}$	0	0	180	180	0	0	180	180	0	0	180	180	0	0	180	180
$arphi_{90}$	0	0	0	0	180	180	180	180	0	0	0	0	180	180	180	180
$arphi_{180}$	90	90	90	90	90	90	90	90	0	0	0	0	0	0	0	0
φ_{rec}	180	0	0	180	0	180	180	0	90	270	270	90	270	90	90	270

(suppresses SQ coherences present after the 2^{nd} pulse; cancels T_1 -recovered magnetization;

CYCLOPS)

Acquisition parameters:

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
NS	Number of scans	≥16
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1 st pulse (t_p)	10-20 µs
D2	Delay after the 2^{nd} pulse (t_m)	from few μ s to T_1
NECH	Number of 180°-pulses in the CPMG train	up to few hundreds
TAU	Half pulse period in the CPMG train	> 40 µs
PHA	Receiver phase	arbitrary

Comments: Instead of a single-echo acquisition, STE is re-focused many times by 180°-pulses (a CPMG train) and the resulting echoes are added up to improve SNR. When D2 is varied (an usual scenario), the cumulative echo intensity decay is fitted with mono-exponential function. The CPMG

echoes is liable to change in phase under D2 variation. It may attenuate the measured Re-signal intensity, thereby causing a faster decay at short D2's.

Example: (Upper) CPMG readout of ¹H STE in tap water, in a static field gradient of ... T/m (spectrometer Magnex). Parameters of the experiment: P90 = 0.7 us, SF = 91.183 MHz, SW = 20 MHz, SI = 1024, NS = 16, RD = 4 s, D1 = 20 us, D2 = 30 us, NECH = 128, TAU = 40 us, room temperature. (Lower) Total sum of CPMG echoes as a function of D2.

5.13. Stimulated Echo

Three-pulse stimulated echo sequence

File names: op_ste_exp.py, op_ste_res.py

Applications: diffusiometry; signal filtering

Pulse sequence: $90_x^\circ - t_p - 90_x^\circ - t_m - 90_x^\circ - t_p - Acq$

Phase cycle: [due to Hürlimann and Venkataramanan, JMR 157, 31 (2002)]

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	180	0	180	0	180	0	180	90	270	90	270	90	270	90	270
$arphi_{90}$	0	0	180	180	0	0	180	180	0	0	180	180	0	0	180	180
$arphi_{90}$	0	0	0	0	180	180	180	180	0	0	0	0	180	180	180	180
φ_{rec}	0	180	180	0	180	0	0	180	270	90	90	270	90	270	270	90

(suppresses SQ coherences present after the 2^{nd} pulse; cancels T_1 -recovered magnetization after 3^{rd} pulse; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window (or spectrum width)	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥16
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1^{st} pulse (t_p)	10-20 μs
D2	Delay after the 2^{nd} pulse (t_m)	from few μ s to T_1
D4	Echo pre-acquisition delay	\pm few μ s
РНА	Receiver phase	arbitrary

Acquisition parameters:

Comments: The sequence is used for diffusion measurements in a static field gradient (see 4.11 and 4.12) and in other experiments that include a z-storage interval (mixing time D2). The phase cycle does not suppress DQ coherences arising after the 2^{nd} pulse in the case of non-averaged dipole or quadrupole interactions. It may give rise to the echo intensity at short mixing times.

Example: ¹H STE decay in an eraser, at room temperature. Parameters of the experiment: P90 = 3.5 us, SF = 360 MHz (spectrometer Birgit), SW = 10 MHz, SI = 1024, D1 = 20 us, RD = 4 s, D2 is varied from 20 us to 4 s. The red line is a mono-exponential fit.

5.14. T1Q

Jeener-Broekaert sequence with solid-echo detection, to measure quadrupolar order relaxation

File names: op_tlq_exp.py, op_tlq_res.py

Applications: T_{1Q} measurements

Pulse sequence: $90_x^\circ - t_p - 45_y^\circ - t_m - 45_x^\circ - \Delta - 90_x^\circ - \Delta - Acq$									
Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	0	90	90	180	180	270	270
	$arphi_{45}$	90	90	180	180	270	270	0	0
	$arphi_{45}$	0	180	0	180	180	0	180	0
	$arphi_{90}$	0	0	180	180	270	90	90	270
	φ_{rec}	0	180	0	180	180	0	180	0

(suppresses SQ & DQ coherences present after the 2^{nd} pulse; destroys STE after 3^{rd} pulse; cancels T_1 -recovered magnetization after 3^{rd} pulse; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window (or spectrum width)	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1^{st} pulse (t_p)	10-20 μs
D2	Delay after the 2^{nd} pulse (t_m)	from few μ s to T_1
PHA	Receiver phase	arbitrary

Acquisition parameters:

Comments: The experiment is based on JMR 43, 213 (1981). The 4th refocusing 90°-pulse is added to enable measuring fast-decaying signals. It also destroys a stimulated echo signal, which is required when D1 is set shorter than the free-induction decay time. The quadrupolar order relaxation is monitored via vanishing of the Im-component of the signal. The amplitude of the Im-component is measured as a sum of few first points of its discrete cosine transform. The T_{1Q} value is used in data fitting in spin-alignment experiments (4.8, 4.9) as a fixed value of the respective exponential

factor of the echo decay. It is a valuable metric of molecular dynamics of its own: the reciprocal T_{1Q} is proportional to the spectral density $J_1(\omega_0)$ of quadrupole fluctuations.

Example: (Upper) ²H time signals and spectra in hexamethylbenzene-d₁₈, at four different mixing times D2 (15 us, 15 ms, 70 ms, and 1s), at room temperature (spectrometer Eis). Quadrupolar order relaxation is tracked via decreasing the Im-channel time signal (red one). Parameters of the experiment: P90 = 2.3 us; SF = 46.704 MHz; SW = 200 kHz, SI = 256; D1 = 30 us, RD=0.5 s; NS = 32. (Lower) The discrete cosine transform amplitude of the Im-signal against D2. The red line is a mono-exponential fit with $T_{1Q} = 56$ ms.

5.15. Zeeman Order

Stimulated spin-echo after storing in Zeeman order

File names: op zeeman exp.py, op zeeman res.py

Applications: studying slow molecular motion in solids (cos-cos correlation)

Pulse sequence:
$$90_x^\circ - t_p - 90_x^\circ - t_m - 90_x^\circ - t_p - Acq$$

Phase cycle:	step:	1	2	3	4	5	6	7	8
	$arphi_{90}$	0	270	0	270	180	90	180	90
	$arphi_{90}$	0	90	0	90	0	90	0	90
	$arphi_{90}$	0	0	180	180	270	270	90	90
	φ_{rec}	0	180	180	0	90	270	270	90

(suppresses single- (SQ) and double-quantum (DQ) coherences present after the second pulse; cancels T_1 -recovered magnetization; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥ 8
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Delay after the 1^{st} pulse (t_p)	10-20 μs
D2	Delay after the 2^{nd} pulse (t_m)	from μ s to T_1
РНА	Receiver phase	arbitrary

Acquisition	parameters:
-------------	-------------

Comments: Not applicable to spins-3/2 and up. Typical use is to vary D2 and measure echo intensity at D1 after the last pulse, as a sum of some first samples in Re-channel. To maximize Re, PHA is adjusted with a reference phase phi0 obtained from the first of arrayed experiments (that with the shortest D2). The first pulse interval D1 (or t_p) is usually kept as short as the receiver dead time. It is not so important to stay precisely at the top of the echo as the experiment is not intended for lineshape analysis (nevertheless the processing part does include FFT). In the end of the measurement "echo vs D2", the result script fits a KWW (stretched exponential) function to the data. Unlike the Spin-Alignment sequence 4.9, the Zeeman Order sequence refocuses both motionally-narrowed and rigid-like components present in the spectrum. If you want a STE free of motionally narrowed components, use 4.9 instead.

Example: ²H STE decay in hexamethylbenzene- d_{18} , at room temperature (spectrometer Eis). Parameters of the experiment: SF = 46.704 MHz; P90 = 2.3 us; D1 = 30 us; RD=0.5 s; NS = 32, D2 is varied from 30 us to 2 s. The red line is a mono-exponential fit with decay time constant 39 ms.

5.16. ZZ-Exchange with T₂-Selection

Preliminarily filtered short- T_2 component is built up during z-storage upon chemical exchange.

File names: op_t2zz_exp.py, op_t2zz_res.py

Applications: to measure kinetics under slow exchange

Pulse sequence: $90_x^{\circ} - t_e - \beta_y - t_e - 90_x^{\circ} - t_m - 90_x^{\circ} - Acq$

Phase cycle:

step:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$arphi_{90}$	0	180	90	270	180	0	270	90	180	0	270	90	0	180	90	270
$arphi_eta$	90	90	180	180	270	270	0	0	270	270	0	0	90	90	180	180
$arphi_{90}$	0	0	90	90	180	180	270	270	180	180	270	270	0	0	90	90
$arphi_{90}$	0	0	90	90	180	180	270	270	0	0	90	90	180	180	270	270
φ_{rec}	0	180	90	270	180	0	270	90	0	180	90	270	180	0	270	90

(eliminates T_1 -recovered signal and contaminating echo signals; CYCLOPS)

Parameter	Description	Typical value
P90	90° pulse length	few µs
SF	PTS' frequency	Larmor frequency
01	Offset from SF	up to ±1 MHz
SW	Spectral window or spectrum width	1 kHz - 1 MHz
SI	Number of acquisition points	256-16k
NS	Number of scans	≥16
DS	Dummy scans	0
RD	Delay between scans	$3-5 \times T_1$
D1	Echo delay in the T_2 filter (t_e)	$3-5 \times T_2$
D2	Z-storage time (t_m)	from tens of μ s to T_1
DEAD1	Pre-acquisition delay for NMR coil ringing	5-10 µs
PHA	Receiver phase	arbitrary

Acquisition parameters:

Comments: The first two pulses constitute a T_2 filter. The delay D1 is set such as to suppress the spectral peak with a shorter T_2 (usually appears broader in the spectrum). The second pulse of the filter is, by default, a 90° pulse, which is optimum for solid-like (Gaussian) peaks. If, however, the longer- T_2 peak that is supposed to pass through the T_2 -filter has a Lorentzian line shape, use a 180° pulse instead. This will minimize the zz-exchange between longer- and shorter- T_2 components

during D1. Because of T_1 -relaxation, the total intensity of the signal decreases with increasing D2. The measurable exchange rates are thus limited between $1/T_{2\text{short}}$ and $1/T_1$.

6. Concluding remarks

This collection of scripts is but to give one a general idea of scripting NMR experiments with DAMARIS. It seems quite suitable in the present form for those to whom NMR is a new technique, while experienced users who tend to write their own scripts can use it as template / building blocks / complement to their own efforts. A special attention was paid to make the scripts look similar in as many aspects as possible – from manipulating experiment's parameters to data handling, so that the user can switch from one experiment to the other swiftly. Such an approach has proved itself useful for both extending scripts with new functionality and writing composite scripts for several experiments. Given time, new scripts will be added. If you have a demand for a special experiment or find bugs in writing, let me know via oleg@nmr.physik.tu-darmstadt.de.