# -*- coding: iso-8859-1 -*- TXEnableDelay = 2e-6 TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0) TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1) ADCSensitivity = 2 # voltage span for ADC def experiment(): # Jeener-Broekaert sequence with solid-echo detection to measure T1Q [JMR 43, 213 (1981)]. # set up acquisition parameters: pars = {} pars['P90'] = 2.3e-6 # 90-degree pulse length (s) pars['SF'] = 46.7e6 # spectrometer frequency (Hz) pars['O1'] = 5.6e3 # offset from SF (Hz) pars['SW'] = 200e3 # spectrum width (Hz) pars['SI'] = 1*256 # number of acquisition points pars['NS'] = 32 # number of scans pars['DS'] = 0 # number of dummy scans pars['RD'] = .5 # delay between scans (s) pars['D1'] = 30e-6 # delay after first pulse or 'short tau' (s) pars['D2'] = 30e-6 # delay after second pulse or 'long tau' (s) pars['PHA'] = -27 # receiver phase (degree) pars['DATADIR'] = '/home/fprak/Students/' # data directory pars['OUTFILE'] = None # output file name # specify a variable parameter (optional): pars['VAR_PAR'] = 'D2' # variable parameter name (a string) start = 30e-6 # starting value stop = 2e-0 # end value steps = 16 # number of values log_scale = True # log scale flag stag_range = False # staggered range flag # check parameters for safety: if pars['PHA'] < 0: pars['PHA'] = 360 + pars['PHA'] if pars['P90'] > 20e-6: raise Exception("Pulse too long!!!") # check whether a variable parameter is named: var_key = pars.get('VAR_PAR') if var_key == 'P90' and (start > 20e-6 or stop > 20e-6): raise Exception("Pulse too long!!!") if pars['NS']%8 != 0: pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8 print 'Number of scans changed to ',pars['NS'],' due to phase cycling' # start the experiment: if var_key: # this is an arrayed experiment: if log_scale: array = log_range(start,stop,steps) else: array = lin_range(start,stop,steps) if stag_range: array = staggered_range(array, size = 2) # estimate the experiment time: if var_key == 'D1': seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS']) elif var_key == 'D2': seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS']) elif var_key == 'RD': seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS']) else: seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for a variable parameter: for index, pars[var_key] in enumerate(array): print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\ ' out of '+str(array.size)+': value = '+str(pars[var_key]) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield t1q_experiment(pars, run) synchronize() else: # estimate the experiment time: seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield t1q_experiment(pars, run) # the pulse program: def t1q_experiment(pars, run): e=Experiment() dummy_scans = pars.get('DS') if dummy_scans: run -= dummy_scans pars['PROG'] = 't1q_experiment' # phase cycle from J. Magn. Reson. 43, 213-223 (1981) extended for 90-deg refocusing pulse which also eliminates echo(es) after 3rd 45-deg pulse: pars['PH1'] = [0, 0, 90, 90, 180, 180, 270, 270] # 90-deg pulse pars['PH3'] = [90, 90, 180, 180, 270, 270, 0, 0] # 1st 45-deg pulse pars['PH4'] = [0, 180, 0, 180, 180, 0, 180, 0] # 2nd 45-deg pulse pars['PH5'] = [0, 0, 180, 180, 270, 90, 90, 270] # refocucing 90-deg pulse pars['PH2'] = [0, 180, 0, 180, 180, 0, 180, 0] # receiver # read in variables: P90 = pars['P90'] P45 = pars['P90']*0.5 SF = pars['SF'] O1 = pars['O1'] RD = pars['RD'] D1 = pars['D1'] D2 = pars['D2'] PH1 = pars['PH1'][run%len(pars['PH1'])] PH3 = pars['PH3'][run%len(pars['PH3'])] PH4 = pars['PH4'][run%len(pars['PH4'])] PH5 = pars['PH5'][run%len(pars['PH5'])] PH2 = pars['PH2'][run%len(pars['PH2'])] PHA = pars['PHA'] # set sampling parameters: SI = pars['SI'] SW = pars['SW'] while SW <= 10e6 and SI < 256*1024: SI *= 2 SW *= 2 # run the pulse sequence: e.wait(RD) # delay between scans e.set_frequency(SF+O1, phase=PH1) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.wait(D1-P90/2-TXEnableDelay) # 'short tau' e.set_phase(PH3) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P45, value=TXEnableValue|TXPulseValue) # 45-degree pulse e.wait(D2-P45/2-TXEnableDelay) # 'long tau' e.set_phase(PH4) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P45, value=TXEnableValue|TXPulseValue) # 45-degree pulse e.wait(10e-6-TXEnableDelay) e.set_phase(PH5) e.ttl_pulse(TXEnableDelay, value=TXEnableValue) e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse e.set_phase(PHA) e.wait(13e-6) e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition # write experiment attributes: for key in pars.keys(): e.set_description(key, pars[key]) # acqusition parameters e.set_description('run', run) # current scan e.set_description('rec_phase', -PH2) # current receiver phase return e