# -*- coding: iso-8859-1 -*- TXEnableDelay = 2e-6 TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0) TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1) ADCSensitivity = 2 # voltage span for ADC def experiment(): # saturation-recovery with soild-echo detection # set up acquisition parameters: pars = {} pars['P90'] = 2.3e-6 # 90-degree pulse length (s) pars['SF'] = 46.7e6 # spectrometer frequency (Hz) pars['O1'] = 5.6e3 # offset from SF (Hz) pars['SW'] = 10e6 # spectral window (Hz) pars['SI'] = 1*1024 # number of acquisition points pars['NS'] = 16 # number of scans pars['DS'] = 0 # number of dummy scans pars['TAU'] = 1 # delay for recovery (s) pars['D3'] = 20e-6 # echo delay (s) pars['D4'] = 0 # echo pre-aquisition delay (s) pars['PHA'] = -30 # receiver phase (degree) # -*- these ain't variable: -*- pars['NECH'] = 40 # number of saturation pulses pars['D1'] = 100e-3 # starting interval in saturation sequence (s) pars['D2'] = 1e-4 # end interval in saturation sequence (s) pars['DATADIR'] = '/home/fprak/Students/' # data directory pars['OUTFILE'] = None # output file name # specify a variable parameter (optional): pars['VAR_PAR'] = 'TAU' # variable parameter name (a string) start = 1e-4 # starting value stop = 1e-0 # end value steps = 10 # number of values log_scale = True # log scale flag stag_range = True # staggered range flag # check parameters for safety: if pars['PHA'] < 0: pars['PHA'] = 360 + pars['PHA'] if pars['P90'] > 20e-6: raise Exception("pulse too long!!!") # check whether a variable parameter is named: var_key = pars.get('VAR_PAR') if var_key == 'P90' and (start > 20e-6 or stop > 20e-6): raise Exception("Pulse too long!!!") if pars['NS']%8 != 0: pars['NS'] = int(round(pars['NS'] / 8) + 1) * 8 print 'Number of scans changed to ',pars['NS'],' due to phase cycling' if pars['D1'] < pars['D2']: raise Exception("D1 must be greater than D2!") sat_length = sum(log_range(pars['D1'],pars['D2'],pars['NECH'])) if sat_length > 1.: raise Exception("saturation sequence too long!!!") # start the experiment: if var_key: # this is an arrayed experiment: if log_scale: array = log_range(start, stop, steps) else: array = lin_range(start, stop, steps) if stag_range: array = staggered_range(array, size = 2) # estimate the experiment time: if var_key == 'TAU': seconds = ((sat_length + pars['D3']*2) * steps + sum(array)) * (pars['NS'] + pars['DS']) elif var_key == 'D3': seconds = ((sat_length + pars['TAU']) * steps + sum(array)*2) * (pars['NS'] + pars['DS']) else: seconds = (sat_length + pars['TAU'] + pars['D3']*2) * steps * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for a variable parameter: for index, pars[var_key] in enumerate(array): print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\ ' out of '+str(array.size)+': value = '+str(pars[var_key]) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield satrec2_experiment(pars, run) synchronize() else: # estimate the experiment time: seconds = (sat_length + pars['TAU'] + pars['D3']*2) * (pars['NS']+ pars['DS']) m, s = divmod(seconds, 60) h, m = divmod(m, 60) print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s) # loop for accumulation: for run in xrange(pars['NS']+pars['DS']): yield satrec2_experiment(pars, run) # the pulse program: def satrec2_experiment(pars, run): e=Experiment() dummy_scans = pars.get('DS') if dummy_scans: run -= dummy_scans pars['PROG'] = 'satrec2_experiment' # phase lists: pars['PH1'] = [ 0] # saturation pulses pars['PH3'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # 1st 90-degree pulse pars['PH4'] = [90, 90, 270, 270, 0, 0, 180, 180] # 2nd 90-degree pulse pars['PH2'] = [ 0, 180, 0, 180, 90, 270, 90, 270] # receiver # read in variables: P90 = pars['P90'] SF = pars['SF'] O1 = pars['O1'] NECH = pars['NECH'] D1 = pars['D1'] D2 = pars['D2'] D3 = pars['D3'] D4 = pars['D4'] TAU = pars['TAU'] PH1 = pars['PH1'][run%len(pars['PH1'])] PH3 = pars['PH3'][run%len(pars['PH3'])] PH4 = pars['PH4'][run%len(pars['PH4'])] PH2 = pars['PH2'][run%len(pars['PH2'])] PHA = pars['PHA'] # set variable delay list for saturation pulses: vdlist = log_range(D2, D1, NECH-1) # set sampling parameters: SI = pars['SI'] SW = pars['SW'] while SW <= 10e6 and SI < 256*1024: SI *= 2 SW *= 2 # the pulse sequence: # saturation: e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse for delay in vdlist[::-1]: e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse # recovery: e.wait(TAU) # wait for tau e.set_phase(PH3) # set phase for next pulse # echo detection: e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse e.wait(D3-P90/2-TXEnableDelay) # echo delay e.set_phase(PH4) # set phase for next pulse e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse e.set_phase(PHA) # set phase for receiver e.wait(D3-P90/2+D4) # echo delay e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition # write experiment attributes: for key in pars.keys(): e.set_description(key, pars[key]) # pulse sequence parameters e.set_description('run', run) # current scan e.set_description('rec_phase', -PH2) # current receiver phase return e