damaris-script-library/Scripts/Steady_Gradient_Spin_Echo_with_CPMG_Detection/sgse2_exp.py
2018-09-14 17:43:02 +02:00

179 lines
7.1 KiB
Python

# -*- coding: iso-8859-1 -*-
TXEnableDelay = 2e-6
TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0)
TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1)
ADCSensitivity = 5 # voltage span for ADC
def experiment(): # the diffusion editing sequence with stimulated echo and CPMG detection
# set up acqusition parameters:
pars = {}
pars['P90'] = 0.8e-6 # 90-degree pulse length (s)
pars['SF'] = 161.85e6 # spectrometer frequency (Hz)
pars['O1'] = 0e3 # offset from SF (Hz)
pars['NS'] = 16 # number of scans
pars['DS'] = 0 # number of dummy scans
pars['RD'] = 6 # delay between scans (s)
pars['D1'] = 20e-6 # delay after first STE pulse (s)
pars['D2'] = 20e-6 # delay after second STE pulse (s)
pars['D4'] = 2.5e-6 # pre-acquisition delay (s)
pars['NECH'] = 128 # number of 180-degree pulses in the CPMG train
pars['TAU'] = 50e-6 # half pulse period in the CPMG train (s)
pars['PHA'] = -190 # receiver phase (degree)
pars['DATADIR'] = '/home/fprak/Desktop/test/' # data directory
pars['OUTFILE'] = None # output file name
# specify a variable parameter (optional):
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
start = 20e-6 # starting value
stop = 3e-1 # end value
steps = 24 # number of values
log_scale = True # log scale flag
stag_range = False # staggered range flag
# check parameters for safety:
if pars['PHA'] < 0:
pars['PHA'] = 360 + pars['PHA']
if pars['P90'] > 20e-6:
raise Exception("Pulse too long!!!")
# check whether a variable parameter is named:
var_key = pars.get('VAR_PAR')
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
raise Exception("Pulse too long!!!")
if pars['NS']%16 != 0:
pars['NS'] = int(round(pars['NS'] / 16) + 1) * 16
print 'Number of scans changed to ',pars['NS'],' due to phase cycling'
# start the experiment:
if var_key:
# this is an arrayed experiment:
if log_scale:
array = log_range(start,stop,steps)
else:
array = lin_range(start,stop,steps)
if stag_range:
array = staggered_range(array, size = 2)
# estimate the experiment time:
if var_key == 'D1':
seconds = (sum(array)*2 + (pars['D2'] + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'D2':
seconds = (sum(array) + (pars['D1']*2 + pars['RD']) * steps) * (pars['NS'] + pars['DS'])
elif var_key == 'RD':
seconds = (sum(array) + (pars['D1']*2 + pars['D2']) * steps) * (pars['NS'] + pars['DS'])
else:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * steps * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for a variable parameter:
for index, pars[var_key] in enumerate(array):
print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\
' out of '+str(array.size)+': value = '+str(pars[var_key])
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield ste2_experiment(pars, run)
synchronize()
else:
# estimate the experiment time:
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
m, s = divmod(seconds, 60)
h, m = divmod(m, 60)
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
# loop for accumulation:
for run in xrange(pars['NS']+pars['DS']):
yield ste2_experiment(pars, run)
# the pulse program:
def ste2_experiment(pars, run):
e=Experiment()
dummy_scans = pars.get('DS')
if dummy_scans:
run -= dummy_scans
pars['PROG'] = 'ste2_experiment'
# phase lists [from J. Magn. Reson. 157, 31 (2002)]:
pars['PH1'] = [0, 180, 0, 180, 0, 180, 0, 180, 90, 270, 90, 270, 90, 270, 90, 270] # 1st 90-degree pulse
pars['PH3'] = [0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180] # 2nd 90-degree pulse
pars['PH4'] = [0, 0, 0, 0, 180, 180, 180, 180, 0, 0, 0, 0, 180, 180, 180, 180] # 3nd 90-degree pulse
pars['PH5'] = [90, 90, 90, 90, 90, 90, 90, 90, 0, 0, 0, 0, 0, 0, 0, 0] # 180-degree pulses
pars['PH2'] = [0, 180, 180, 0, 180, 0, 0, 180, 270, 90, 90, 270, 90, 270, 270, 90] # receiver
# read in variables:
P90 = pars['P90']
P180 = pars['P90']*2
SF = pars['SF']
O1 = pars['O1']
RD = pars['RD']
D1 = pars['D1']
D2 = pars['D2']
D4 = pars['D4']
TAU = pars['TAU']
NECH = pars['NECH']
PH1 = pars['PH1'][run%len(pars['PH1'])]
PH3 = pars['PH3'][run%len(pars['PH3'])]
PH4 = pars['PH4'][run%len(pars['PH4'])]
PH5 = pars['PH5'][run%len(pars['PH5'])]
PH2 = pars['PH2'][run%len(pars['PH2'])]
PHA = pars['PHA']
# set sampling parameters:
SI = 128 # number of echo samples
SW = 20e6 # sample rate
AQ = (SI+6)/SW # acquisition window
if TAU < (P90+P180)/2+TXEnableDelay or TAU < (P180+TXEnableDelay+AQ)/2:
raise Exception('pulse period is too short!')
if 2*TAU < P180+TXEnableDelay+SI/SW:
raise Exception('pulse period too short!')
# run the pulse sequence:
e.wait(RD) # delay between scans
e.set_frequency(SF+O1, phase=PH1)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 1st 90-degree pulse
e.wait(D1-P90-TXEnableDelay) # short delay
e.set_phase(PH3)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 2nd 90-degree pulse
e.wait(D2-P90-TXEnableDelay) # long delay
e.set_phase(PH4)
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 3rd 90-degree pulse
e.wait(D1+TAU-P90/2-P180/2-TXEnableDelay) # wait for first echo and tau
e.set_phase(PH5)
e.loop_start(NECH) # ----- loop for CPMG pulse train: -----
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
e.ttl_pulse(P180, value=TXEnableValue|TXPulseValue) # apply a 180-degree pulse
e.set_phase(PHA) # set phase for receiver
e.wait(TAU-(P180+TXEnableDelay+AQ)/2+D4) # pre-acquisition delay
e.record(SI, SW, timelength=AQ, sensitivity=ADCSensitivity) # acquire echo samples
e.wait(TAU-(P180+TXEnableDelay+AQ)/2-D4) # post-acquisition delay
e.set_phase(PH5) # set phase for theta-degree pulse
e.loop_end() # --------------------------------------
# write experiment attributes:
for key in pars.keys():
e.set_description(key, pars[key]) # acqusition parameters
e.set_description('run', run) # current scan
e.set_description('rec_phase', -PH2) # current receiver phase
return e