283 lines
10 KiB
Python
283 lines
10 KiB
Python
# -*- coding: iso-8859-1 -*-
|
|
|
|
from numpy import *
|
|
from scipy.signal import *
|
|
from scipy.optimize import *
|
|
from os import path, rename
|
|
|
|
def result():
|
|
|
|
the_experiment = None # current experiment's name
|
|
var_key = ''
|
|
|
|
measurements = {'satrec2_experiment': MeasurementResult('Saturation Recovery'),
|
|
'solidecho_experiment': MeasurementResult('Solid Echo'),
|
|
'spinal_experiment': MeasurementResult('Spin Alignment'),
|
|
'zeeman_experiment': MeasurementResult('Zeeman Order')}
|
|
|
|
measurement_ranges = {'satrec2_experiment': [0.5e-6, 4.5e-6],
|
|
'solidecho_experiment': [0.5e-6, 4.5e-6],
|
|
'spinal_experiment': [0.5e-6, 4.5e-6],
|
|
'zeeman_experiment': [0.5e-6, 4.5e-6]}
|
|
measurement_ranging = True
|
|
|
|
# loop over the incoming results:
|
|
for timesignal in results:
|
|
if not isinstance(timesignal,ADC_Result):
|
|
continue
|
|
|
|
# read experiment parameters:
|
|
pars = timesignal.get_description_dictionary()
|
|
|
|
# keep track of the actual experiment's name:
|
|
if the_experiment != pars.get('PROG'):
|
|
the_experiment = pars.get('PROG')
|
|
suffix = '' # output file name's suffix
|
|
counter = 1
|
|
|
|
# ---------------- digital filter ------------------
|
|
|
|
# get actual sampling rate of timesignal:
|
|
sampling_rate = timesignal.get_sampling_rate()
|
|
|
|
# get user-defined spectrum width:
|
|
spec_width = pars['SW']
|
|
|
|
# specify cutoff frequency, in relative units:
|
|
cutoff = spec_width / sampling_rate
|
|
|
|
# number of filter's coefficients:
|
|
numtaps = 29
|
|
|
|
if cutoff < 1: # otherwise no filter applied
|
|
|
|
# use firwin to create a lowpass FIR filter:
|
|
fir_coeff = firwin(numtaps, cutoff)
|
|
|
|
# downsize x according to user-defined spectral window:
|
|
skip = int(sampling_rate / spec_width)
|
|
timesignal.x = timesignal.x[::skip]
|
|
|
|
for i in range(2):
|
|
# apply the filter to ith channel:
|
|
timesignal.y[i] = lfilter(fir_coeff, 1.0, timesignal.y[i])
|
|
|
|
# zeroize first N-1 "corrupted" samples:
|
|
timesignal.y[i][:numtaps-1] = 0.0
|
|
|
|
# circular left shift of y:
|
|
timesignal.y[i] = roll(timesignal.y[i], -(numtaps-1))
|
|
|
|
# downsize y to user-defined number of samples (SI):
|
|
timesignal.y[i] = timesignal.y[i][::skip]
|
|
|
|
# update the sampling_rate attribute of the signal's:
|
|
timesignal.set_sampling_rate(spec_width)
|
|
|
|
# ----------------------------------------------------
|
|
|
|
# rotate timesignal according to current receiver's phase:
|
|
timesignal.phase(pars['rec_phase'])
|
|
|
|
# provide timesignal to the display tab:
|
|
data['Current scan'] = timesignal
|
|
|
|
# accumulate...
|
|
if not locals().get('accu'):
|
|
accu = Accumulation()
|
|
|
|
# skip dummy scans, if any:
|
|
if pars['run'] < 0: continue
|
|
|
|
# add up:
|
|
accu += timesignal
|
|
|
|
# provide accumulation to the display tab:
|
|
data['Accumulation'] = accu
|
|
|
|
# check how many scans are done:
|
|
if accu.n == pars['NS']: # accumulation is complete
|
|
|
|
# make a copy:
|
|
echo = accu + 0
|
|
|
|
# compute the signal's phase:
|
|
#phi0 = arctan2(accu.y[1][0], accu.y[0][0]) * 180 / pi
|
|
#if not locals().get('ref'): ref = phi0
|
|
#print 'phi0 = ', phi0
|
|
|
|
# rotate the signal to maximize Re (optional):
|
|
#echo.phase(-phi0)
|
|
|
|
# check whether it is an arrayed experiment:
|
|
var_key = pars.get('VAR_PAR')
|
|
if var_key:
|
|
# get variable parameter's value:
|
|
var_value = pars.get(var_key)
|
|
|
|
# provide signal recorded with this var_value to the display tab:
|
|
data['Accumulation'+"/"+var_key+"=%e"%(var_value)] = accu
|
|
|
|
# estimate noise level:
|
|
if not locals().get('noise'):
|
|
n = int(0.1*accu.x.size)
|
|
noise = 3*std(accu.y[0][-n-29:-30])
|
|
|
|
# measure signal intensity vs. var_value:
|
|
if the_experiment in measurements.keys():
|
|
|
|
# option a: the sum of samples within the given range:
|
|
if measurement_ranging == True:
|
|
[start, stop] = echo.get_sampling_rate() * array(measurement_ranges[the_experiment])
|
|
measurements[the_experiment][var_value] = sum(echo.y[0][int(start):int(stop)])
|
|
|
|
# option b: the sum of all samples above noise:
|
|
else:
|
|
measurements[the_experiment][var_value] = sum(echo.y[0][echo.y[0]>noise])
|
|
|
|
# store a measurement:
|
|
data[measurements[the_experiment].get_title()] = measurements[the_experiment]
|
|
|
|
# update the file name suffix:
|
|
suffix = '_' + str(counter)
|
|
counter += 1
|
|
|
|
else:
|
|
print "Cannot recognize experiment: accumulate without measuring"
|
|
|
|
# save accu if required:
|
|
outfile = pars.get('OUTFILE')
|
|
if outfile:
|
|
datadir = pars.get('DATADIR')
|
|
|
|
# write raw data in Simpson format:
|
|
filename = datadir+outfile+suffix+'.dat'
|
|
if path.exists(filename):
|
|
rename(filename, datadir+'~'+outfile+suffix+'.dat')
|
|
accu.write_to_simpson(filename)
|
|
|
|
# write parameters in a text file:
|
|
filename = datadir+outfile+suffix+'.par'
|
|
if path.exists(filename):
|
|
rename(filename, datadir+'~'+outfile+suffix+'.par')
|
|
|
|
fileobject = open(filename, 'w')
|
|
for key in sorted(pars.iterkeys()):
|
|
if key=='run': continue
|
|
if key=='rec_phase': continue
|
|
fileobject.write('%s%s%s'%(key,'=', pars[key]))
|
|
fileobject.write('\n')
|
|
fileobject.close()
|
|
|
|
# reset accumulation:
|
|
del accu
|
|
|
|
if var_key == 'TAU' or var_key == 'D2':
|
|
# mono-exponential saturation-recovery fit:
|
|
try:
|
|
xdata = measurements['satrec2_experiment'].get_xdata()
|
|
ydata = measurements['satrec2_experiment'].get_ydata()
|
|
[amplitude, rate, offset] = fitfunc_recovery(xdata, ydata)
|
|
print 'Mono-exponential fit to saturation-recovery data:'
|
|
print '%s%02g' % ('Amplitude = ', amplitude)
|
|
print '%s%02g' % ('T1 [s] = ', 1./rate)
|
|
|
|
# update display for fit:
|
|
measurements['satrec2_experiment'].y = func_recovery([amplitude, rate, offset], xdata)
|
|
data[measurements['satrec2_experiment'].get_title()] = measurements['satrec2_experiment']
|
|
except:
|
|
pass
|
|
|
|
# KWW fit to spin-alignment echoes:
|
|
try:
|
|
xdata = measurements['spinal_experiment'].get_xdata()
|
|
ydata = measurements['spinal_experiment'].get_ydata()
|
|
[amplitude, rate, beta] = fitfunc_kww(xdata, ydata)
|
|
print 'KWW fit to spin-alignment echoes:'
|
|
print '%s%02g' % ('Amplitude = ', amplitude)
|
|
print '%s%02g' % ('T2 [s] = ', 1./rate)
|
|
print '%s%01g' % ('Beta = ', beta)
|
|
|
|
# update display for the fit:
|
|
measurements['spinal_experiment'].y = func_kww([amplitude, rate, beta], xdata)
|
|
data[measurements['spinal_experiment'].get_title()] = measurements['spinal_experiment']
|
|
except:
|
|
pass
|
|
|
|
# KWW fit to Zeeman-order echoes:
|
|
try:
|
|
xdata = measurements['zeeman_experiment'].get_xdata()
|
|
ydata = measurements['zeeman_experiment'].get_ydata()
|
|
[amplitude, rate, beta] = fitfunc_kww(xdata, ydata)
|
|
print 'KWW fit to Zeeman-order echoes:'
|
|
print '%s%02g' % ('Amplitude = ', amplitude)
|
|
print '%s%02g' % ('T2 [s] = ', 1./rate)
|
|
print '%s%01g' % ('Beta = ', beta)
|
|
|
|
# update display for the fit:
|
|
measurements['zeeman_experiment'].y = func_kww([amplitude, rate, beta], xdata)
|
|
data[measurements['zeeman_experiment'].get_title()] = measurements['zeeman_experiment']
|
|
except:
|
|
pass
|
|
|
|
# the fitting procedure for satrec_experiment:
|
|
def fitfunc_recovery(xdata, ydata):
|
|
|
|
# initialize variable parameters:
|
|
try:
|
|
# solve Az = b:
|
|
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
|
|
b = log(abs(mean(ydata[-2:]) - ydata[0:xdata.size/2]))
|
|
z = linalg.lstsq(transpose(A), b)
|
|
amplitude = exp(z[0][0])
|
|
rate = -z[0][1]
|
|
except:
|
|
amplitude = abs(ydata[-1] - ydata[0])
|
|
rate = 1./(xdata[-1] - xdata[0])
|
|
offset = min(ydata)
|
|
p0 = [amplitude, rate, offset]
|
|
|
|
# run least-squares optimization:
|
|
plsq = leastsq(residuals_recovery, p0, args=(xdata, ydata))
|
|
|
|
return plsq[0] # best-fit parameters
|
|
|
|
def residuals_recovery(p, xdata, ydata):
|
|
return ydata - func_recovery(p, xdata)
|
|
|
|
# here is the function to fit
|
|
def func_recovery(p, xdata):
|
|
return p[0]*(1-exp(-p[1]*xdata)) + p[2]
|
|
|
|
|
|
# the fitting procedure for spinal_experiment and zeeman_experiment:
|
|
def fitfunc_kww(xdata, ydata):
|
|
|
|
# initialize variable parameters:
|
|
try:
|
|
# solve Az = b:
|
|
A = array((ones(xdata.size/2), xdata[0:xdata.size/2]))
|
|
b = log(abs(ydata[0:xdata.size/2]))
|
|
z = linalg.lstsq(transpose(A), b)
|
|
amplitude = exp(z[0][0])
|
|
rate = -z[0][1]
|
|
except:
|
|
amplitude = abs(ydata[0])
|
|
rate = 1./(xdata[-1] - xdata[0])
|
|
beta = 1.
|
|
p0 = [amplitude, rate, beta]
|
|
|
|
# run least-squares optimization:
|
|
plsq = leastsq(residuals_kww, p0, args=(xdata, ydata))
|
|
|
|
return plsq[0] # best-fit parameters
|
|
|
|
def residuals_kww(p, xdata, ydata):
|
|
return ydata - func_kww(p, xdata)
|
|
|
|
# here is the function to fit:
|
|
def func_kww(p, xdata):
|
|
return p[0]*exp(-(p[1]*xdata)**p[2])
|
|
|
|
|
|
pass |