176 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: iso-8859-1 -*-
 | |
| 
 | |
| TXEnableDelay = 2e-6
 | |
| TXEnableValue = 0b0001  # TTL line enabling RF amplifier (bit 0)
 | |
| TXPulseValue  = 0b0010  # TTL line triggering RF pulses  (bit 1)
 | |
| ADCSensitivity = 2	# voltage span for ADC
 | |
| 
 | |
| def experiment(): # 2D NOESY experiment, using States-TPPI technique for quadrature detection in F1 
 | |
| 
 | |
|                   # States-TPPI technique achieves two effects for an indirect dimension F1: 
 | |
|                   # (1) signal frequency discrimination and (2) displacement of the unmodulated 
 | |
|                   # artefact signal from an inconvenient location in the middle of spectrum to the edge.
 | |
|                   # (1) is achieved by recording two data sets at each t1 point - with orthogonal phases 
 | |
|                   # of the preparation pulse and same receiver phase - and storing them in separate memory 
 | |
|                   # locations. These two fid measurements yield one complex data point in F1.
 | |
|                   # (2) by inverting phase of the preparation pulse and the receiver each time when t1 is 
 | |
|                   # incremented (that is for subsequent complex points). Therefore, the artefact signal 
 | |
|                   # becomes modulated at the Nyquist frequency and appears in the spectrum at F1=±SW/2 Hz 
 | |
|                   # instead of 0 Hz, where SW is spectral width. [http://nmrwiki.org]
 | |
|     
 | |
|     # set up acqusition parameters:      
 | |
|     pars = {}
 | |
|     pars['P90'] = 1.65e-6           # 90-degree pulse length (s)
 | |
|     pars['SF'] = 338.7e6            # spectrometer frequency (Hz)
 | |
|     pars['O1'] = -57.0e3            # offset from SF (Hz)
 | |
|     pars['SW'] = 150e3              # spectral width (Hz)
 | |
|     pars['SI1'] = 32                # number of (complex) data points in F1 (2D)
 | |
|     pars['SI2'] = 128               # number of (complex) data points in F2
 | |
|     pars['D8'] = 100e-6             # mixing time, tm (s)
 | |
|     pars['NS'] = 16                 # number of scans
 | |
|     pars['DS'] = 0                  # number of dummy scans
 | |
|     pars['RD'] = 2.5                # delay between scans (s)
 | |
|     pars['DEAD1'] = 4e-6            # receiver dead time (s)  
 | |
|     pars['PHA'] = 150               # receiver reference phase (degree)
 | |
|     pars['DATADIR'] = '/home/fprak/'    # data directory
 | |
|     pars['OUTFILE'] = 'test'                # output file name
 | |
|     
 | |
|     # specify a variable parameter (optional):
 | |
|     pars['VAR_PAR'] = 'D8'	# variable parameter name (a string)   
 | |
|     start = 10.e-6		# starting value
 | |
|     stop = 1000e-6 		# end value
 | |
|     steps = 3			# number of values
 | |
|     log_scale = True		# log scale flag 
 | |
|     stag_range = False		# staggered range flag
 | |
|     
 | |
|     # check parameters for safety:     
 | |
|     if pars['PHA'] < 0:
 | |
|         pars['PHA'] = 360 + pars['PHA']
 | |
|         
 | |
|     if pars['P90'] > 20e-6:
 | |
|         raise Exception("Pulse too long!!!")   
 | |
|                          
 | |
|     var_key = pars.get('VAR_PAR')
 | |
|     if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
 | |
|         raise Exception("Pulse too long!!!")
 | |
| 
 | |
|     if pars['NS']%8 != 0:
 | |
|         pars['NS'] = (pars['NS'] / 8 + 1) * 8 
 | |
|         print 'Number of scans changed to', pars['NS'], 'due to phase cycling'
 | |
|         
 | |
|     # start the experiment:
 | |
|     if var_key: 
 | |
|         # this is an arrayed experiment:
 | |
|         if log_scale:
 | |
|             array = log_range(start,stop,steps)
 | |
|         else:
 | |
|             array = lin_range(start,stop,steps) 
 | |
|         
 | |
|         if stag_range:
 | |
|             array = staggered_range(array, size=2)
 | |
| 
 | |
|        # estimate the experiment time:
 | |
|         if var_key == 'D8':
 | |
|             seconds = (sum(array) + (.5*pars['SI1']/pars['SW'] + pars['RD']) * steps) * (pars['NS'] + pars['DS']) * 2*pars['SI1']
 | |
|         elif var_key == 'RD':
 | |
|             seconds = (sum(array) + (.5*pars['SI1']/pars['SW'] + pars['D8']) * steps) * (pars['NS'] + pars['DS']) * 2*pars['SI1']
 | |
|         else:
 | |
|             seconds = (.5*pars['SI1']/pars['SW'] + pars['D8'] + pars['RD']) * steps * (pars['NS']+ pars['DS']) * 2*pars['SI1']
 | |
|         m, s = divmod(seconds, 60)
 | |
|         h, m = divmod(m, 60)
 | |
|         print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
 | |
| 
 | |
| 
 | |
|         # loop for a variable parameter:
 | |
|         for index, pars[var_key] in enumerate(array):
 | |
|             print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\
 | |
|                                 ' out of '+str(array.size)+': value = '+str(pars[var_key])
 | |
|             # loop for accumulation and sampling the indirect dimension F1:
 | |
|             for run in xrange((pars['NS']+pars['DS'])*2*pars['SI1']):
 | |
|                 yield noesyst_experiment(pars, run)
 | |
|             synchronize() 
 | |
| 
 | |
|     else:
 | |
|        # estimate the experiment time:
 | |
|         seconds = (.5*pars['SI1']/pars['SW'] + pars['D8'] + pars['RD']) * (pars['NS']+ pars['DS']) * 2*pars['SI1']
 | |
|         print 'sec ', seconds
 | |
|         m, s = divmod(seconds, 60)
 | |
|         h, m = divmod(m, 60)
 | |
|         print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
 | |
| 
 | |
|        # loop for accumulation and sampling the indirect dimension F1:
 | |
|         for run in xrange((pars['NS']+pars['DS'])*2*pars['SI1']):
 | |
|             yield noesyst_experiment(pars, run)
 | |
| 
 | |
| 
 | |
| # the pulse program: 
 | |
| 
 | |
| def noesyst_experiment(pars, run):
 | |
|     e=Experiment()
 | |
| 
 | |
|     dummy_scans = pars.get('DS')
 | |
|     if dummy_scans:
 | |
|         run -= dummy_scans
 | |
|     
 | |
|     # phase lists (M.H.Levitt 'Spin Dynamics', 2nd edition, p.530): 
 | |
|     pars['PH1'] = [  0, 180,   0, 180,   0, 180,   0, 180]	
 | |
|     pars['PH3'] = [180, 180, 180, 180, 180, 180, 180, 180]
 | |
|     pars['PH4'] = [  0,   0,  90,  90, 180, 180, 270, 270]	
 | |
|     pars['PH2'] = [  0, 180,  90, 270, 180,   0, 270,  90]    # receiver
 | |
| 
 | |
|     # read in variables:
 | |
|     P90 = pars['P90'] 
 | |
|     SF = pars['SF']
 | |
|     O1 = pars['O1']   
 | |
|     RD = pars['RD']
 | |
|     DEAD1 = pars['DEAD1']
 | |
|     D8 = pars['D8']
 | |
|     NS = pars['NS']
 | |
|     PH1 = pars['PH1'][run%len(pars['PH1'])]
 | |
|     PH3 = pars['PH3'][run%len(pars['PH3'])]
 | |
|     PH4 = pars['PH4'][run%len(pars['PH4'])]
 | |
|     PH2 = pars['PH2'][run%len(pars['PH2'])] 
 | |
|     PHA = pars['PHA']
 | |
|         
 | |
|     # F1 sampling parameters:
 | |
|     IN0 = 1./pars['SW']        # t1 increment
 | |
|     
 | |
|     # the States-TPPI bit:
 | |
|     PH1-= (run/(1*NS))%4*90    # PH1 changes by 90-deg. after every 1*NS scans
 | |
|     D0  = (run/(2*NS)) *IN0    # t1 increases by IN0 after every 2*NS scans   
 | |
|     
 | |
|     # F2 sampling parameters:
 | |
|     SI2 = pars['SI2']
 | |
|     SW2 = pars['SW']
 | |
|     while SW2 <= 10e6 and SI2 < 256*1024:
 | |
|         SI2 *= 2
 | |
|         SW2 *= 2
 | |
|         
 | |
|     # run the pulse sequence: 
 | |
|     e.wait(RD)                                  	# delay between scans
 | |
|     e.set_frequency(SF+O1, phase=PH1)
 | |
|     e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
 | |
|     e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue)	# 90-degree pulse 
 | |
| 
 | |
|     e.wait(D0)                                          # incremented delay t1
 | |
|     e.set_phase(PH3)
 | |
| 
 | |
|     e.ttl_pulse(TXEnableDelay, value=TXEnableValue)		
 | |
|     e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue)	# 90-degree pulse 
 | |
| 
 | |
|     e.wait(D8)                  	              	# mixing time
 | |
|     e.set_phase(PH4)
 | |
| 
 | |
|     e.ttl_pulse(TXEnableDelay, value=TXEnableValue)		
 | |
|     e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue)	# 90-degree pulse
 | |
|     e.set_phase(PHA)                                    # set phase for receiver 
 | |
|     e.wait(DEAD1)                                       # wait for coil ringdown
 | |
|     e.record(SI2, SW2, sensitivity=ADCSensitivity)     	# acquire signal
 | |
| 
 | |
|     # write experiment attributes:  
 | |
|     for key in pars.keys():
 | |
|         e.set_description(key, pars[key])		# acqusition parameters
 | |
|     e.set_description('run', run)               	# current scan
 | |
|     e.set_description('rec_phase', -PH2)		# current receiver phase
 | |
| 
 | |
|     return e |