197 lines
7.9 KiB
Python
197 lines
7.9 KiB
Python
# -*- coding: iso-8859-1 -*-
|
|
from xml.etree import cElementTree as ET
|
|
import time
|
|
TXEnableDelay = 2e-6
|
|
TXEnableValue = 0b0001 # TTL line blanking RF amplifier (bit 0)
|
|
TXPulseValue = 0b0010 # TTL line triggering RF pulses (bit 1)
|
|
ADCSensitivity = 0.5 # voltage span for ADC
|
|
|
|
def experiment(): # SinSin-Stimulated Echos for central Anregung
|
|
|
|
# set up acquisition parameters:
|
|
pars = {}
|
|
# here: we want central line excitation, i.e. "long" pulses
|
|
pars['P90'] = 5.4e-6 # 90-degree pulse length (s),
|
|
pars['PFLIP'] = 90 # 2nd and 3rd pulse flip angles, i.e. 90 or 45
|
|
pars['SF'] = 95.2e6 # spectrometer frequency (Hz)
|
|
pars['O1'] =0 # offset from SF (Hz)
|
|
pars['SW'] = 5e6 # spectral window (Hz)
|
|
pars['SI'] = 8*1024 # number of acquisition points
|
|
pars['NS'] = 32*32*2#*3 # number of scans # multiple of 32
|
|
pars['DS'] = 0 # number of dummy scans
|
|
pars['RD'] = 0.1 # delay between scans (s) (Recycle Delay)
|
|
pars['TAU'] = 0.014*7 # delay between SatRec and experiment (s)
|
|
pars['D1'] = 20e-6 # delay after first pulse, or short tau (s)
|
|
pars['D2'] = 10e-6 # delay after second pulse, or long tau (s)
|
|
pars['D_PREAQ'] = 5e-6
|
|
pars['PHA'] =337 # receiver phase (degree)
|
|
|
|
### SatRec
|
|
pars['D3'] = 1e-5 # shortest SatRec delay
|
|
pars['D4'] = 1e-3 # longest SatRec delay
|
|
pars["NECH"] = 12 # numbe of saturation pulse
|
|
###
|
|
|
|
pars['DATADIR'] = '/home/fprak/Desktop/' # data directory
|
|
pars['OUTFILE'] = None # output file name
|
|
|
|
# specify a variable parameter (optional):
|
|
pars['tp'] = [20e-6,50e-6,90e-6,150e-6,300e-6]
|
|
pars['VAR_PAR'] = 'D2' # variable parameter name (a string)
|
|
start = 20e-6 # starting value
|
|
stop =0.3 # end value
|
|
steps = 21 # number of values
|
|
log_scale = True # log scale flag
|
|
stag_range = True # staggered range flag
|
|
|
|
# check parameters for safety:
|
|
if pars['PHA'] < 0:
|
|
pars['PHA'] = 360 + pars['PHA']
|
|
|
|
if pars['P90'] > 20e-6:
|
|
raise Exception("Pulse too long!!!")
|
|
|
|
# check whether a variable parameter is named:
|
|
var_key = pars.get('VAR_PAR')
|
|
if var_key == 'P90' and (start > 20e-6 or stop > 20e-6):
|
|
raise Exception("Pulse too long!!!")
|
|
|
|
|
|
# start the experiment:
|
|
if var_key:
|
|
# this is an arrayed experiment:
|
|
if log_scale:
|
|
array = log_range(start,stop,steps)
|
|
else:
|
|
array = lin_range(start,stop,steps)
|
|
|
|
if stag_range:
|
|
array = staggered_range(array, size = 3)
|
|
|
|
# estimate time by looping once over everything
|
|
duration = 0
|
|
for tp in pars["tp"]:
|
|
for index, var_par_value in enumerate(array):
|
|
# assign each var_key the corresponding var_value
|
|
pars[var_key] = var_par_value
|
|
# parse state tree
|
|
e_xml = ET.fromstring(spinal32_experiment(pars, 0).write_xml_string())
|
|
# sum up all time=x states
|
|
for a_state in e_xml.iter("state"):
|
|
duration += float(a_state.get("time"))*(pars['NS'] + pars['DS'])
|
|
t = time.localtime(duration)
|
|
print "\n\nINFO: Experiment will be finnished in: %id %ih %im" % (t.tm_mday-1, t.tm_hour-1, t.tm_min)
|
|
print "INFO: Experiment will be finnished at: %s\n\n" % (time.ctime(time.time() + duration))
|
|
|
|
# loop for a variable parameter:
|
|
for tp in pars['tp']:
|
|
pars['D1'] = tp
|
|
for index, pars[var_key] in enumerate(array):
|
|
print 'Arrayed experiment for '+var_key+': run = '+str(index+1)+\
|
|
' out of '+str(len(pars['tp'])*array.size)+': value = ' + str(tp) + ' / '+str(pars[var_key])
|
|
# loop for accumulation:
|
|
|
|
for run in xrange(pars['NS']+pars['DS']):
|
|
yield spinal32_experiment(pars, run)
|
|
synchronize()
|
|
|
|
else:
|
|
# estimate the experiment time:
|
|
seconds = (pars['D1']*2 + pars['D2'] + pars['RD']) * (pars['NS']+ pars['DS'])
|
|
m, s = divmod(seconds, 60)
|
|
h, m = divmod(m, 60)
|
|
print '%s%02d:%02d:%02d' % ('Experiment time estimated: ', h, m, s)
|
|
|
|
# loop for accumulation:
|
|
for run in xrange(pars['NS']+pars['DS']):
|
|
yield spinal32_experiment(pars, run)
|
|
|
|
|
|
# the pulse program:
|
|
|
|
def spinal32_experiment(pars, run):
|
|
e=Experiment()
|
|
|
|
dummy_scans = pars.get('DS')
|
|
if dummy_scans:
|
|
run -= dummy_scans
|
|
|
|
pars['PROG'] = 'spinalign_central_line_experiment'
|
|
|
|
# phase cycle by F. Qi et al. [JMR 169 (2004) 225-239] with 3rd-phase invertion
|
|
# Storek: SE+ + SE-
|
|
pars['PH1'] = [180, 180, 180, 180, 0, 0, 0, 0, 180, 180, 180, 180, 0, 0, 0, 0, 270, 270, 270, 270, 90,90,90,90, 270, 270, 270, 270, 90,90,90,90]
|
|
pars['PH3'] = [270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 270, 270, 90, 90, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0, 180, 180, 0, 0]
|
|
pars['PH4'] = [180, 0, 180, 0, 180, 0, 180, 0, 270, 90, 270, 90, 270, 90, 270, 90, 180, 0, 180, 0, 180, 0, 180, 0, 270, 90, 270, 90, 270, 90, 270, 90]
|
|
pars['PH2'] = [270, 90, 90, 270, 90, 270, 270, 90, 0, 180, 180, 0, 180, 0, 0, 180, 90, 270, 270, 90, 270, 90, 90, 270, 180, 0, 0, 180, 0, 180, 180, 0]
|
|
|
|
|
|
# read in variables:
|
|
P90 = pars['P90']
|
|
PMOD = pars["PFLIP"]/90.*pars['P90'] # modified flip angle
|
|
SF = pars['SF']
|
|
O1 = pars['O1']
|
|
RD = pars['RD']
|
|
D1 = pars['D1']
|
|
D2 = pars['D2']
|
|
D3 = pars['D3']
|
|
D4 = pars['D4']
|
|
D_PREAQ = pars['D_PREAQ']
|
|
TAU = pars['TAU']
|
|
NECH = pars['NECH']
|
|
PH1 = pars['PH1'][run%len(pars['PH1'])]
|
|
PH3 = pars['PH3'][run%len(pars['PH3'])]
|
|
PH4 = pars['PH4'][run%len(pars['PH4'])]
|
|
PH2 = pars['PH2'][run%len(pars['PH2'])]
|
|
PHA = pars['PHA']
|
|
|
|
# set sampling parameters:
|
|
SI = pars['SI']
|
|
SW = pars['SW']
|
|
|
|
|
|
# run the pulse program:
|
|
# saturation:
|
|
# set variable delay list for saturation pulses:
|
|
vdlist = log_range(D4, D3, NECH-1)
|
|
|
|
e.wait(RD) # relaxation delay between scans
|
|
e.set_frequency(SF+O1, phase=PH1) # set frequency and phase for saturation pulses
|
|
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
|
|
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
|
|
|
|
for delay in vdlist[::-1]:
|
|
e.wait(delay-P90-TXEnableDelay) # wait for next saturation pulse
|
|
e.ttl_pulse(TXEnableDelay, value=TXEnableValue) # enable RF amplifier
|
|
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # apply 90-degree pulse
|
|
|
|
# recovery:
|
|
e.set_phase(PH1)
|
|
e.wait(TAU-0.5e-6-TXEnableDelay) # wait for tau
|
|
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
|
|
e.ttl_pulse(P90, value=TXEnableValue|TXPulseValue) # 90-degree pulse
|
|
|
|
e.set_phase(PH3)
|
|
e.wait(D1-P90/2- PMOD/2-TXEnableDelay-0.5e-6) # 'short tau'
|
|
|
|
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
|
|
e.ttl_pulse(PMOD, value=TXEnableValue|TXPulseValue) # X-degree pulse
|
|
|
|
e.set_phase(PH4)
|
|
e.wait(D2-PMOD-TXEnableDelay-0.5e-6) # 'long tau'
|
|
|
|
e.ttl_pulse(TXEnableDelay, value=TXEnableValue)
|
|
e.ttl_pulse(PMOD, value=TXEnableValue|TXPulseValue) # X-degree pulse
|
|
|
|
e.set_phase(PHA)
|
|
e.wait(D1-PMOD/2-0.5e-6-D_PREAQ) # 'short tau'
|
|
e.record(SI, SW, sensitivity=ADCSensitivity) # acquisition
|
|
|
|
# write experiment parameters:
|
|
for key in pars.keys():
|
|
e.set_description(key, pars[key]) # acqusition parameters
|
|
e.set_description('run', run) # current scan
|
|
e.set_description('rec_phase', -PH2) # current receiver phase
|
|
|
|
return e
|