Initial commit
This commit is contained in:
771
Diss_main.bbl
Normal file
771
Diss_main.bbl
Normal file
@@ -0,0 +1,771 @@
|
||||
% $ biblatex auxiliary file $
|
||||
% $ biblatex bbl format version 3.2 $
|
||||
% Do not modify the above lines!
|
||||
%
|
||||
% This is an auxiliary file used by the 'biblatex' package.
|
||||
% This file may safely be deleted. It will be recreated as
|
||||
% required.
|
||||
%
|
||||
\begingroup
|
||||
\makeatletter
|
||||
\@ifundefined{ver@biblatex.sty}
|
||||
{\@latex@error
|
||||
{Missing 'biblatex' package}
|
||||
{The bibliography requires the 'biblatex' package.}
|
||||
\aftergroup\endinput}
|
||||
{}
|
||||
\endgroup
|
||||
|
||||
\datalist[entry]{anyt/global//global/global}
|
||||
\entry{Bischofberger2014}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=BI}{%
|
||||
family={Bischofberger},
|
||||
familyi={B\bibinitperiod},
|
||||
given={I.},
|
||||
giveni={I\bibinitperiod},
|
||||
}}%
|
||||
{{hash=CDCE}{%
|
||||
family={Calzolari},
|
||||
familyi={C\bibinitperiod},
|
||||
given={D.\bibnamedelima C.\bibnamedelima E.},
|
||||
giveni={D\bibinitperiod\bibinitdelim C\bibinitperiod\bibinitdelim
|
||||
E\bibinitperiod},
|
||||
}}%
|
||||
{{hash=TV}{%
|
||||
family={Trappe},
|
||||
familyi={T\bibinitperiod},
|
||||
given={V.},
|
||||
giveni={V\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{The Royal Society of Chemistry}%
|
||||
}
|
||||
\keyw{pNIPAM,linear,microgel,cononsolvency,methanol,ethanol,propanol,SLS,radius
|
||||
of gyration,hydrodynamic radius,aqueous alcohol,excess enthalpy}
|
||||
\strng{namehash}{BI+1}
|
||||
\strng{fullhash}{BICDCETV1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Bis+14}
|
||||
\field{sortinit}{B}
|
||||
\field{sortinithash}{B}
|
||||
\field{abstract}{%
|
||||
We investigate the co-nonsolvency of poly-N-isopropyl acrylamide (PNiPAM)
|
||||
in different water–alcohol mixtures and show that this phenomenon is due to
|
||||
two distinct solvation contributions governing the phase behavior of PNiPAM
|
||||
in the water-rich and alcohol-rich regime respectively. While hydrophobic
|
||||
hydration is the predominant contribution governing the phase behavior of
|
||||
PNiPAM in the water-rich regime{,} the mixing contributions governing the
|
||||
phase behavior of classical polymer solutions determine the phase behavior of
|
||||
PNiPAM in the alcohol-rich regime. This is evidenced by distinct scaling
|
||||
relations denoting the energetic state of the aqueous medium as a key
|
||||
parameter for the phase behavior of PNiPAM in the water-rich regime{,} while
|
||||
the volume fractions of respectively water{,} alcohol and PNiPAM become
|
||||
relevant parameters in the alcohol-rich regime. Adding alcohol to water
|
||||
decreases the energetics of the aqueous medium{,} which gradually suppresses
|
||||
hydrophobic hydration{,} while adding water to alcohol decreases the solvent
|
||||
quality. Consequently{,} PNiPAM is insoluble in the intermediate range of
|
||||
solvent composition{,} where neither hydrophobic hydration nor the mixing
|
||||
contributions prevail. This accounts for the co-nonsolvency phenomenon
|
||||
observed for PNiPAM in water–alcohol mixtures.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.1039/C4SM01345J
|
||||
\endverb
|
||||
\field{issue}{41}
|
||||
\field{pages}{8288\bibrangedash 8295}
|
||||
\field{title}{Co-nonsolvency of PNiPAM at the transition between solvation
|
||||
mechanisms}
|
||||
\verb{url}
|
||||
\verb http://dx.doi.org/10.1039/C4SM01345J
|
||||
\endverb
|
||||
\field{volume}{10}
|
||||
\verb{file}
|
||||
\verb :Bischofberger2014 - Co Nonsolvency of PNiPAM at the Transition betwe
|
||||
\verb en Solvation Mechanisms.pdf:PDF;:CononsolvencyOfPNIPAMAtTheTransition
|
||||
\verb BetweenSolvationMechanisms-Corrections_BischofbergerEtAl_SoftMatter20
|
||||
\verb 14.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Soft Matter}
|
||||
\field{year}{2014}
|
||||
\endentry
|
||||
|
||||
\entry{Costa2002}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=CROR}{%
|
||||
family={Costa},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Ricardo O.\bibnamedelima R.},
|
||||
giveni={R\bibinitperiod\bibinitdelim O\bibinitperiod\bibinitdelim
|
||||
R\bibinitperiod},
|
||||
}}%
|
||||
{{hash=FRFS}{%
|
||||
family={Freitas},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Roberto F.\bibnamedelima S.},
|
||||
giveni={R\bibinitperiod\bibinitdelim F\bibinitperiod\bibinitdelim
|
||||
S\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{Hydrophobic hydration, Lower critical solution temperature, LCST,
|
||||
Thermoreversible hydrogel, thermosensitive, PNIPAM, aqueous alcohol, UCST,
|
||||
cloud point, cononsolvency, chain length, hydrophobic hydration OR hydration
|
||||
shell, hydrophobic hydration OR hydration shell OR hydration water,
|
||||
hydrophobic hydration OR hydration shell OR hydration water OR clathrate}
|
||||
\strng{namehash}{CRORFRFS1}
|
||||
\strng{fullhash}{CRORFRFS1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{CF02}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{C}
|
||||
\field{abstract}{%
|
||||
In this work, the phase behavior of linear poly(N-isopropylacrylamide)
|
||||
(PNIPA) in water--solvent mixtures was investigated. Several solvents,
|
||||
including low molecular weight alcohols, were selected and phase separation
|
||||
temperatures were determined through cloud point measurements. All the
|
||||
studied systems exhibited the cononsolvency effect, i.e. lower PNIPA
|
||||
compatibility within definite ranges of composition in water-rich mixtures.
|
||||
However, it was first detected that the coexistence of phase separation
|
||||
temperatures---a lower critical solution temperature (LCST) with an upper
|
||||
critical solution temperature (UCST)---at higher solvent concentrations in
|
||||
most systems, depend on the hydrophobic nature of the solvent. The change
|
||||
from a LCST to a UCST was correlated with the competition between
|
||||
polymer--water and polymer--solvent interactions mediated by compositional
|
||||
factors. The effects produced by the different solvents tested were
|
||||
qualitatively compared, considering aspects related to their particular
|
||||
molecular structures, such as the potential to form hydrogen bonds and the
|
||||
implications of the size and shape of non-polar groups for hydrophobic
|
||||
hydration.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb https://doi.org/10.1016/S0032-3861(02)00507-4
|
||||
\endverb
|
||||
\field{issn}{0032-3861}
|
||||
\field{number}{22}
|
||||
\field{pages}{5879\bibrangedash 5885}
|
||||
\field{title}{Phase behavior of poly(N-iso\-propyl\-acryl\-amide) in binary
|
||||
aqueous solutions}
|
||||
\verb{url}
|
||||
\verb https://www.sciencedirect.com/science/article/pii/S0032386102005074
|
||||
\endverb
|
||||
\field{volume}{43}
|
||||
\verb{file}
|
||||
\verb :Costa2002 - Phase Behavior of Poly(N Isopropylacrylamide) in Binary
|
||||
\verb Aqueous Solutions.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Polymer}
|
||||
\field{year}{2002}
|
||||
\endentry
|
||||
|
||||
\entry{Carr1954}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=CHY}{%
|
||||
family={Carr},
|
||||
familyi={C\bibinitperiod},
|
||||
given={H.\bibnamedelima Y.},
|
||||
giveni={H\bibinitperiod\bibinitdelim Y\bibinitperiod},
|
||||
}}%
|
||||
{{hash=PEM}{%
|
||||
family={Purcell},
|
||||
familyi={P\bibinitperiod},
|
||||
given={E.\bibnamedelima M.},
|
||||
giveni={E\bibinitperiod\bibinitdelim M\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{American Physical Society}%
|
||||
}
|
||||
\keyw{NMR, CPMG, Spin Echoes}
|
||||
\strng{namehash}{CHYPEM1}
|
||||
\strng{fullhash}{CHYPEM1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{CP54}
|
||||
\field{sortinit}{C}
|
||||
\field{sortinithash}{C}
|
||||
\verb{doi}
|
||||
\verb 10.1103/PhysRev.94.630
|
||||
\endverb
|
||||
\field{issue}{3}
|
||||
\field{pages}{630\bibrangedash 638}
|
||||
\field{title}{Effects of Diffusion on Free Precession in Nuclear Magnetic
|
||||
Resonance Experiments}
|
||||
\verb{url}
|
||||
\verb https://link.aps.org/doi/10.1103/PhysRev.94.630
|
||||
\endverb
|
||||
\field{volume}{94}
|
||||
\verb{file}
|
||||
\verb :Carr1954 - Effects of Diffusion on Free Precession in Nuclear Magnet
|
||||
\verb ic Resonance Experiments.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Physical Review}
|
||||
\field{month}{05}
|
||||
\field{year}{1954}
|
||||
\endentry
|
||||
|
||||
\entry{Fujishige1989}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=FS}{%
|
||||
family={Fujishige},
|
||||
familyi={F\bibinitperiod},
|
||||
given={Shouei},
|
||||
giveni={S\bibinitperiod},
|
||||
}}%
|
||||
{{hash=KK}{%
|
||||
family={Kubota},
|
||||
familyi={K\bibinitperiod},
|
||||
given={K.},
|
||||
giveni={K\bibinitperiod},
|
||||
}}%
|
||||
{{hash=AI}{%
|
||||
family={Ando},
|
||||
familyi={A\bibinitperiod},
|
||||
given={I.},
|
||||
giveni={I\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{PNIPAM, molecular weight, concentration-dependent, light scattering,
|
||||
DLS, SLS, thermoresponsive}
|
||||
\strng{namehash}{FS+1}
|
||||
\strng{fullhash}{FSKKAI1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Fuj+89}
|
||||
\field{sortinit}{F}
|
||||
\field{sortinithash}{F}
|
||||
\field{abstract}{%
|
||||
When aqueous solutions of well-fractionated poly(N-isopropylacrylamide)
|
||||
samples are heated, the polymer molecular dimensions change abruptly at a
|
||||
critical temperature (~32{$^{\circ}$}C), followed by aggregation of
|
||||
individual polymer chains dispersed in a state of globular particles to give
|
||||
an optically detectable phase transition. The transition occurs independently
|
||||
of either the molecular weight of the polymer (5x10^4 to 840x10^4) or its
|
||||
concentration (0.01 to 1wt%). This behavior is reminiscent of the thermal
|
||||
denaturation of proteins in aqueous medium.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.1021/j100345a085
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://doi.org/10.1021/j100345a085
|
||||
\endverb
|
||||
\field{number}{8}
|
||||
\field{pages}{3311\bibrangedash 3313}
|
||||
\field{title}{Phase transition of aqueous solutions of
|
||||
poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide)}
|
||||
\verb{url}
|
||||
\verb https://doi.org/10.1021/j100345a085
|
||||
\endverb
|
||||
\field{volume}{93}
|
||||
\verb{file}
|
||||
\verb :Fujishige1989 - Phase Transition of Aqueous Solutions of Poly(N Isop
|
||||
\verb ropylacrylamide) and Poly(N Isopropylmethacrylamide).pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Journal of Physical Chemistry}
|
||||
\field{year}{1989}
|
||||
\endentry
|
||||
|
||||
\entry{Gedde2019}{book}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=GUW}{%
|
||||
family={Gedde},
|
||||
familyi={G\bibinitperiod},
|
||||
given={Ulf\bibnamedelima W.},
|
||||
giveni={U\bibinitperiod\bibinitdelim W\bibinitperiod},
|
||||
}}%
|
||||
{{hash=HMS}{%
|
||||
family={Hedenqvist},
|
||||
familyi={H\bibinitperiod},
|
||||
given={Mikael\bibnamedelima S.},
|
||||
giveni={M\bibinitperiod\bibinitdelim S\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Springer Cham}%
|
||||
}
|
||||
\keyw{book, polymers}
|
||||
\strng{namehash}{GUWHMS1}
|
||||
\strng{fullhash}{GUWHMS1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{GH19}
|
||||
\field{sortinit}{G}
|
||||
\field{sortinithash}{G}
|
||||
\verb{doi}
|
||||
\verb doi.org/10.1007/978-3-030-29794-7
|
||||
\endverb
|
||||
\field{edition}{2}
|
||||
\field{isbn}{978-3-030-29794-7}
|
||||
\field{series}{Graduate Texts in Physics}
|
||||
\field{title}{Fundamental Polymer Science}
|
||||
\verb{file}
|
||||
\verb :Gedde2019 - Fundamental Polymer Science.pdf:PDF
|
||||
\endverb
|
||||
\field{year}{2019}
|
||||
\endentry
|
||||
|
||||
\entry{Halperin2015}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=HA}{%
|
||||
family={Halperin},
|
||||
familyi={H\bibinitperiod},
|
||||
given={Avraham},
|
||||
giveni={A\bibinitperiod},
|
||||
}}%
|
||||
{{hash=KM}{%
|
||||
family={Kr{\"{o}}ger},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Martin},
|
||||
giveni={M\bibinitperiod},
|
||||
}}%
|
||||
{{hash=WFM}{%
|
||||
family={Winnik},
|
||||
familyi={W\bibinitperiod},
|
||||
given={Fran{\c{c}}oise\bibnamedelima M.},
|
||||
giveni={F\bibinitperiod\bibinitdelim M\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{lower critical solution temperature, mesoglobules, metastability,
|
||||
tacticity, type II phase behavior, PNIPAM, review}
|
||||
\strng{namehash}{HA+1}
|
||||
\strng{fullhash}{HAKMWFM1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Hal+15}
|
||||
\field{sortinit}{H}
|
||||
\field{sortinithash}{H}
|
||||
\field{abstract}{%
|
||||
In 1968, Heskins and Guillet published the first systematic study of the
|
||||
phase diagram of poly(N-isopropylacrylamide) (PNIPAM), at the time a
|
||||
{\textquotedblleft}young polymer{\textquotedblright} first synthesized in
|
||||
1956. Since then, PNIPAM became the leading member of the growing families of
|
||||
thermoresponsive polymers and of stimuli-responsive,
|
||||
{\textquotedblleft}smart{\textquotedblright} polymers in general. Its thermal
|
||||
response is unanimously attributed to its phase behavior. Yet, in spite of
|
||||
50\hspace{0.25em}years of research, a coherent quantitative picture remains
|
||||
elusive. In this Review we survey the reported phase diagrams, discuss the
|
||||
differences and comment on theoretical ideas regarding their possible
|
||||
origins. We aim to alert the PNIPAM community to open questions in this
|
||||
reputably mature domain.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.1002/anie.201506663
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201506663
|
||||
\endverb
|
||||
\field{number}{51}
|
||||
\field{pages}{15342\bibrangedash 15367}
|
||||
\field{title}{Poly(N-isopropyl\-acrylamide) Phase Diagrams: Fifty Years of
|
||||
Research}
|
||||
\verb{url}
|
||||
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201506663
|
||||
\endverb
|
||||
\field{volume}{54}
|
||||
\verb{file}
|
||||
\verb :Halperin2015 - Poly(N Isopropylacrylamide) Phase Diagrams_ Fifty Yea
|
||||
\verb rs of Research.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Angewandte Chemie - International Edition}
|
||||
\field{year}{2015}
|
||||
\endentry
|
||||
|
||||
\entry{Hindman1971}{article}{}
|
||||
\name{author}{4}{}{%
|
||||
{{hash=HJC}{%
|
||||
family={Hindman},
|
||||
familyi={H\bibinitperiod},
|
||||
given={J.\bibnamedelima C.},
|
||||
giveni={J\bibinitperiod\bibinitdelim C\bibinitperiod},
|
||||
}}%
|
||||
{{hash=ZAJ}{%
|
||||
family={Zielen},
|
||||
familyi={Z\bibinitperiod},
|
||||
given={A.\bibnamedelima J.},
|
||||
giveni={A\bibinitperiod\bibinitdelim J\bibinitperiod},
|
||||
}}%
|
||||
{{hash=SA}{%
|
||||
family={Svirmickas},
|
||||
familyi={S\bibinitperiod},
|
||||
given={A.},
|
||||
giveni={A\bibinitperiod},
|
||||
}}%
|
||||
{{hash=WM}{%
|
||||
family={Wood},
|
||||
familyi={W\bibinitperiod},
|
||||
given={M.},
|
||||
giveni={M\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{2h-nmr,17o-nmr,water,d2o,h217o,t1,spin-lattice
|
||||
relaxation,thermodynamics,entropy,enthalpy,SED,quadrupole coupling
|
||||
constant,qcc,H2O,nmr}
|
||||
\strng{namehash}{HJC+1}
|
||||
\strng{fullhash}{HJCZAJSAWM1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Hin+71}
|
||||
\field{sortinit}{H}
|
||||
\field{sortinithash}{H}
|
||||
\verb{doi}
|
||||
\verb 10.1063/1.1674887
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://doi.org/10.1063/1.1674887
|
||||
\endverb
|
||||
\field{number}{2}
|
||||
\field{pages}{621\bibrangedash 634}
|
||||
\field{title}{Relaxation Processes in Water. The Spin–Lattice Relaxation
|
||||
of the Deuteron in D2O and Oxygen‐17 in H217O}
|
||||
\verb{url}
|
||||
\verb https://doi.org/10.1063/1.1674887
|
||||
\endverb
|
||||
\field{volume}{54}
|
||||
\verb{file}
|
||||
\verb :Hindman1971 - Relaxation Processes in Water. the Spin–Lattice Rela
|
||||
\verb xation of the Deuteron in D2O and Oxygen‐17 in H217O.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{The Journal of Chemical Physics}
|
||||
\field{year}{1971}
|
||||
\endentry
|
||||
|
||||
\entry{Korde2019}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=KJM}{%
|
||||
family={Korde},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Jay\bibnamedelima M.},
|
||||
giveni={J\bibinitperiod\bibinitdelim M\bibinitperiod},
|
||||
}}%
|
||||
{{hash=KB}{%
|
||||
family={Kandasubramanian},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Balasubramanian},
|
||||
giveni={B\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{review, application focused, drug delivery, smart interfaces,
|
||||
application-focused}
|
||||
\strng{namehash}{KJMKB1}
|
||||
\strng{fullhash}{KJMKB1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{KK19}
|
||||
\field{sortinit}{K}
|
||||
\field{sortinithash}{K}
|
||||
\field{abstract}{%
|
||||
Over the past few decades, reversible responsive polymer materials have
|
||||
received interest conjointly from academia as well as industry owing to their
|
||||
ability to adapt to the surrounding environment, change adhesion and
|
||||
wettability of copious species upon extraneous stimulus, and regulate
|
||||
transportation of molecules and ions. Stimuli-responsive polymers or
|
||||
macromolecules also exhibit the ability to convert biochemical and chemical
|
||||
signals into mechanical, thermal, optical, and electrical signals, and vice
|
||||
versa, for which they are utilized in an array of applications like
|
||||
{\textquotedblleft}smart{\textquotedblright} optical systems, drug delivery,
|
||||
diagnostics, and tissue engineering, in conjunction with coatings, textiles,
|
||||
biosensors, and microelectromechanical systems. Extensive exploration on
|
||||
reversible responsive polymeric systems for a variety of engineering
|
||||
functionalities has been done; however, no collection of all the information
|
||||
is available as such. This Review consolidates profuse studies of reversible
|
||||
responsive polymers utilized in an assorted array of functions, inclusive of
|
||||
sensors, drug delivery, smart and self-healing coatings, etc.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.1021/acs.iecr.9b00683
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://doi.org/10.1021/acs.iecr.9b00683
|
||||
\endverb
|
||||
\field{number}{23}
|
||||
\field{pages}{9709\bibrangedash 9757}
|
||||
\field{title}{Fundamentals and Effects of Biomimicking Stimuli-Responsive
|
||||
Polymers for Engineering Functions}
|
||||
\verb{url}
|
||||
\verb https://doi.org/10.1021/acs.iecr.9b00683
|
||||
\endverb
|
||||
\field{volume}{58}
|
||||
\verb{file}
|
||||
\verb :Korde2019 - Fundamentals and Effects of Biomimicking Stimuli Respons
|
||||
\verb ive Polymers for Engineering Functions.pdf:PDF;:FundamentalsAndEffect
|
||||
\verb sOfBiomimickingStimuliResponsivePolymersForEngineeringFunctions-Corre
|
||||
\verb ction_KordeEtAl_IndustrEngineerChemistryResearch2020.pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Industrial and Engineering Chemistry Research}
|
||||
\field{year}{2019}
|
||||
\endentry
|
||||
|
||||
\entry{Meiboom1958}{article}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=MS}{%
|
||||
family={Meiboom},
|
||||
familyi={M\bibinitperiod},
|
||||
given={S.},
|
||||
giveni={S\bibinitperiod},
|
||||
}}%
|
||||
{{hash=GD}{%
|
||||
family={Gill},
|
||||
familyi={G\bibinitperiod},
|
||||
given={D.},
|
||||
giveni={D\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{NMR, CPMG, Spin Echoes}
|
||||
\strng{namehash}{MSGD1}
|
||||
\strng{fullhash}{MSGD1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{MG58}
|
||||
\field{sortinit}{M}
|
||||
\field{sortinithash}{M}
|
||||
\verb{doi}
|
||||
\verb 10.1063/1.1716296
|
||||
\endverb
|
||||
\verb{eprint}
|
||||
\verb https://doi.org/10.1063/1.1716296
|
||||
\endverb
|
||||
\field{number}{8}
|
||||
\field{pages}{688\bibrangedash 691}
|
||||
\field{title}{Modified Spin-Echo Method for Measuring Nuclear Relaxation
|
||||
Times}
|
||||
\verb{url}
|
||||
\verb https://doi.org/10.1063/1.1716296
|
||||
\endverb
|
||||
\field{volume}{29}
|
||||
\field{journaltitle}{Review of Scientific Instruments}
|
||||
\field{year}{1958}
|
||||
\endentry
|
||||
|
||||
\entry{PubChem2005NIPAM}{misc}{}
|
||||
\keyw{synthesis,molecular weights,NIPPA}
|
||||
\field{labelalpha}{Pub}
|
||||
\field{sortinit}{P}
|
||||
\field{sortinithash}{P}
|
||||
\verb{url}
|
||||
\verb https://pubchem.ncbi.nlm.nih.gov/compound/Propanamide_-N-isopropyl
|
||||
\endverb
|
||||
\field{urlday}{11}
|
||||
\field{urlmonth}{11}
|
||||
\field{urlyear}{2024}
|
||||
\endentry
|
||||
|
||||
\entry{Rubinstein2004}{book}{}
|
||||
\name{author}{2}{}{%
|
||||
{{hash=RM}{%
|
||||
family={Rubinstein},
|
||||
familyi={R\bibinitperiod},
|
||||
given={Michael},
|
||||
giveni={M\bibinitperiod},
|
||||
}}%
|
||||
{{hash=CRH}{%
|
||||
family={Colby},
|
||||
familyi={C\bibinitperiod},
|
||||
given={Ralph\bibnamedelima H.},
|
||||
giveni={R\bibinitperiod\bibinitdelim H\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Oxford University Press}%
|
||||
}
|
||||
\strng{namehash}{RMCRH1}
|
||||
\strng{fullhash}{RMCRH1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{RC04}
|
||||
\field{sortinit}{R}
|
||||
\field{sortinithash}{R}
|
||||
\field{isbn}{019852059x}
|
||||
\field{title}{Polymer Physics}
|
||||
\field{year}{2004}
|
||||
\endentry
|
||||
|
||||
\entry{Slichter1990}{book}{}
|
||||
\name{author}{1}{}{%
|
||||
{{hash=SCP}{%
|
||||
family={Slichter},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Charles\bibnamedelima P.},
|
||||
giveni={C\bibinitperiod\bibinitdelim P\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\name{editor}{1}{}{%
|
||||
{{hash=LHKV}{%
|
||||
family={Lotsch},
|
||||
familyi={L\bibinitperiod},
|
||||
given={Helmut K.\bibnamedelima V.},
|
||||
giveni={H\bibinitperiod\bibinitdelim K\bibinitperiod\bibinitdelim
|
||||
V\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{Springer Berlin-Heidelberg}%
|
||||
}
|
||||
\keyw{NMR,theory,book}
|
||||
\strng{namehash}{SCP1}
|
||||
\strng{fullhash}{SCP1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Sli90}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{S}
|
||||
\verb{doi}
|
||||
\verb 10.1007/978-3-662-09441-9
|
||||
\endverb
|
||||
\field{edition}{Third}
|
||||
\field{isbn}{978-3-662-09441-9}
|
||||
\field{series}{Springer series in solid-state sciences}
|
||||
\field{title}{Principles of Magnetic Resonance}
|
||||
\verb{file}
|
||||
\verb :Slichter1963 - Principles of Magnetic Resonance_ with Examples from
|
||||
\verb Solid State Physics.pdf:PDF
|
||||
\endverb
|
||||
\field{year}{1990}
|
||||
\endentry
|
||||
|
||||
\entry{Saeckel2024}{article}{}
|
||||
\name{author}{5}{}{%
|
||||
{{hash=SC}{%
|
||||
family={Säckel},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christoph},
|
||||
giveni={C\bibinitperiod},
|
||||
}}%
|
||||
{{hash=vKR}{%
|
||||
prefix={von},
|
||||
prefixi={v\bibinitperiod},
|
||||
family={Klitzing},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Regine},
|
||||
giveni={R\bibinitperiod},
|
||||
}}%
|
||||
{{hash=SR}{%
|
||||
family={Siegel},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Renée},
|
||||
giveni={R\bibinitperiod},
|
||||
}}%
|
||||
{{hash=SJ}{%
|
||||
family={Senker},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Jürgen},
|
||||
giveni={J\bibinitperiod},
|
||||
}}%
|
||||
{{hash=VM}{%
|
||||
family={Vogel},
|
||||
familyi={V\bibinitperiod},
|
||||
given={Michael},
|
||||
giveni={M\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\keyw{NMR,pNIPAM,2H-NMR,spin-lattice relaxation,T1,spin-spin
|
||||
relaxation,D2O,spectral density,field cycling,confinement,lcst}
|
||||
\strng{namehash}{SC+1}
|
||||
\strng{fullhash}{SCKRvSRSJVM1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Sä+24}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{S}
|
||||
\field{abstract}{%
|
||||
We use <sup>2</sup>H nuclear magnetic resonance to study the dynamics of
|
||||
deuterated water in a solution of linear poly (N-isopropyl acrylamide)
|
||||
(pNIPAM, 4 wt%) across its coil-to-globule transition at a lower critical
|
||||
solubility temperature (LCST) around 32°C. In agreement with previous
|
||||
studies, we find that the <sup>2</sup>H spin-lattice (T<sub>1</sub>) and, in
|
||||
particular, spin-spin (T<sub>2</sub>) relaxation times abruptly decrease when
|
||||
heating through the LCST, indicating that the polymer collapse causes an
|
||||
emergence of a water fraction with strongly reduced mobility. To quantify the
|
||||
dynamics of this slow water fraction, we exploit the fact that <sup>2</sup>H
|
||||
field-cycling relaxometry allows us to measure the spectral density of the
|
||||
water reorientation in a broad frequency range. We find that the slow water
|
||||
fraction is characterised by a broad logarithmic Gaussian distribution of
|
||||
correlation times (σ<sub>LG</sub> = 2.3), which is centred about
|
||||
τ<sub>LG</sub> ≈ 10<sup>–9</sup> s near the LCST. Hence, the common
|
||||
assumption of a Debye spectral density does not apply. We argue that a minor
|
||||
water fraction, which is located inside the pNIPAM globules and shows
|
||||
dynamics governed by the disordered polymer matrix, accompanies a major water
|
||||
fraction with bulk-like dynamics above the LCST. The former fraction amounts
|
||||
to about 0.4 water molecules per NIPAM monomer. Several findings indicate
|
||||
fast exchange between these bound and free water fractions on the
|
||||
T<sub>1</sub> and T<sub>2</sub> time scales.%
|
||||
}
|
||||
\verb{doi}
|
||||
\verb 10.3389/frsfm.2024.1379816
|
||||
\endverb
|
||||
\field{issn}{2813-0499}
|
||||
\field{title}{Water dynamics in solutions of linear poly (N-isopropyl
|
||||
acrylamide) studied by 2H NMR field-cycling relaxometry}
|
||||
\verb{url}
|
||||
\verb https://www.frontiersin.org/articles/10.3389/frsfm.2024.1379816
|
||||
\endverb
|
||||
\field{volume}{4}
|
||||
\verb{file}
|
||||
\verb :Saeckel2024 - Water Dynamics in Solutions of Linear Poly (N Isopropy
|
||||
\verb l Acrylamide) Studied by 2H NMR Field Cycling Relaxometry.pdf:PDF;:Fr
|
||||
\verb ontiers_2024_Jan_Published-2024-03-21-SI.PDF:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Frontiers in Soft Matter}
|
||||
\field{year}{2024}
|
||||
\endentry
|
||||
|
||||
\entry{Saeckel2025}{article}{}
|
||||
\name{author}{3}{}{%
|
||||
{{hash=SC}{%
|
||||
family={Säckel},
|
||||
familyi={S\bibinitperiod},
|
||||
given={Christoph},
|
||||
giveni={C\bibinitperiod},
|
||||
}}%
|
||||
{{hash=vKR}{%
|
||||
prefix={von},
|
||||
prefixi={v\bibinitperiod},
|
||||
family={Klitzing},
|
||||
familyi={K\bibinitperiod},
|
||||
given={Regine},
|
||||
giveni={R\bibinitperiod},
|
||||
}}%
|
||||
{{hash=VM}{%
|
||||
family={Vogel},
|
||||
familyi={V\bibinitperiod},
|
||||
given={Michael},
|
||||
giveni={M\bibinitperiod},
|
||||
}}%
|
||||
}
|
||||
\list{publisher}{1}{%
|
||||
{The Royal Society of Chemistry}%
|
||||
}
|
||||
\keyw{NMR,pNIPAM,2H-NMR,spin-lattice relaxation,T1,spin-spin
|
||||
relaxation,D2O,cononsolvency,field cycling,confinement,aqueous
|
||||
alcohol,ethanol,h217o,T2,lcst,ucst}
|
||||
\strng{namehash}{SC+1}
|
||||
\strng{fullhash}{SCKRvVM1}
|
||||
\field{labelnamesource}{author}
|
||||
\field{labeltitlesource}{title}
|
||||
\field{labelalpha}{Sä+25}
|
||||
\field{sortinit}{S}
|
||||
\field{sortinithash}{S}
|
||||
\verb{doi}
|
||||
\verb 10.1039/d5sm00055f
|
||||
\endverb
|
||||
\field{title}{$^2$H and$^{17}$O NMR studies of solvent dynamics related to
|
||||
the cononsolvency of poly(N-isopropyl acrylamide) in ethanol-water mixtures}
|
||||
\verb{url}
|
||||
\verb http://dx.doi.org/10.1039/D5SM00055F
|
||||
\endverb
|
||||
\verb{file}
|
||||
\verb :/autohome/saeckech/Promotion/Papers/2024_Cononsolvency/Published/2HA
|
||||
\verb nd17ONMRStudiesOfSolventDynamicsRelatedToTheCononsolvencyOfPolyNIsopr
|
||||
\verb opylacrylamideInEthanolWaterMixtures_SaeckelEtAl_SoftMatter2025.pdf:P
|
||||
\verb DF;:/autohome/saeckech/Promotion/Papers/2024_Cononsolvency/Published/
|
||||
\verb 2HAnd17ONMRStudiesOfSolventDynamicsRelatedToTheCononsolvencyOfPolyNIs
|
||||
\verb opropylacrylamideInEthanolWaterMixtures_SaeckelEtAl_SoftMatter2025_SI
|
||||
\verb .pdf:PDF
|
||||
\endverb
|
||||
\field{journaltitle}{Soft Matter}
|
||||
\field{year}{2025}
|
||||
\endentry
|
||||
\enddatalist
|
||||
\endinput
|
Reference in New Issue
Block a user