% $ biblatex auxiliary file $
% $ biblatex bbl format version 3.2 $
% Do not modify the above lines!
%
% This is an auxiliary file used by the 'biblatex' package.
% This file may safely be deleted. It will be recreated as
% required.
%
\begingroup
\makeatletter
\@ifundefined{ver@biblatex.sty}
{\@latex@error
{Missing 'biblatex' package}
{The bibliography requires the 'biblatex' package.}
\aftergroup\endinput}
{}
\endgroup
\datalist[entry]{anyt/global//global/global}
\entry{Bischofberger2014}{article}{}
\name{author}{3}{}{%
{{hash=BI}{%
family={Bischofberger},
familyi={B\bibinitperiod},
given={I.},
giveni={I\bibinitperiod},
}}%
{{hash=CDCE}{%
family={Calzolari},
familyi={C\bibinitperiod},
given={D.\bibnamedelima C.\bibnamedelima E.},
giveni={D\bibinitperiod\bibinitdelim C\bibinitperiod\bibinitdelim
E\bibinitperiod},
}}%
{{hash=TV}{%
family={Trappe},
familyi={T\bibinitperiod},
given={V.},
giveni={V\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{The Royal Society of Chemistry}%
}
\keyw{pNIPAM,linear,microgel,cononsolvency,methanol,ethanol,propanol,SLS,radius
of gyration,hydrodynamic radius,aqueous alcohol,excess enthalpy}
\strng{namehash}{BI+1}
\strng{fullhash}{BICDCETV1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Bis+14}
\field{sortinit}{B}
\field{sortinithash}{B}
\field{abstract}{%
We investigate the co-nonsolvency of poly-N-isopropyl acrylamide (PNiPAM)
in different water–alcohol mixtures and show that this phenomenon is due to
two distinct solvation contributions governing the phase behavior of PNiPAM
in the water-rich and alcohol-rich regime respectively. While hydrophobic
hydration is the predominant contribution governing the phase behavior of
PNiPAM in the water-rich regime{,} the mixing contributions governing the
phase behavior of classical polymer solutions determine the phase behavior of
PNiPAM in the alcohol-rich regime. This is evidenced by distinct scaling
relations denoting the energetic state of the aqueous medium as a key
parameter for the phase behavior of PNiPAM in the water-rich regime{,} while
the volume fractions of respectively water{,} alcohol and PNiPAM become
relevant parameters in the alcohol-rich regime. Adding alcohol to water
decreases the energetics of the aqueous medium{,} which gradually suppresses
hydrophobic hydration{,} while adding water to alcohol decreases the solvent
quality. Consequently{,} PNiPAM is insoluble in the intermediate range of
solvent composition{,} where neither hydrophobic hydration nor the mixing
contributions prevail. This accounts for the co-nonsolvency phenomenon
observed for PNiPAM in water–alcohol mixtures.%
}
\verb{doi}
\verb 10.1039/C4SM01345J
\endverb
\field{issue}{41}
\field{pages}{8288\bibrangedash 8295}
\field{title}{Co-nonsolvency of PNiPAM at the transition between solvation
mechanisms}
\verb{url}
\verb http://dx.doi.org/10.1039/C4SM01345J
\endverb
\field{volume}{10}
\verb{file}
\verb :Bischofberger2014 - Co Nonsolvency of PNiPAM at the Transition betwe
\verb en Solvation Mechanisms.pdf:PDF;:CononsolvencyOfPNIPAMAtTheTransition
\verb BetweenSolvationMechanisms-Corrections_BischofbergerEtAl_SoftMatter20
\verb 14.pdf:PDF
\endverb
\field{journaltitle}{Soft Matter}
\field{year}{2014}
\endentry
\entry{Costa2002}{article}{}
\name{author}{2}{}{%
{{hash=CROR}{%
family={Costa},
familyi={C\bibinitperiod},
given={Ricardo O.\bibnamedelima R.},
giveni={R\bibinitperiod\bibinitdelim O\bibinitperiod\bibinitdelim
R\bibinitperiod},
}}%
{{hash=FRFS}{%
family={Freitas},
familyi={F\bibinitperiod},
given={Roberto F.\bibnamedelima S.},
giveni={R\bibinitperiod\bibinitdelim F\bibinitperiod\bibinitdelim
S\bibinitperiod},
}}%
}
\keyw{Hydrophobic hydration, Lower critical solution temperature, LCST,
Thermoreversible hydrogel, thermosensitive, PNIPAM, aqueous alcohol, UCST,
cloud point, cononsolvency, chain length, hydrophobic hydration OR hydration
shell, hydrophobic hydration OR hydration shell OR hydration water,
hydrophobic hydration OR hydration shell OR hydration water OR clathrate}
\strng{namehash}{CRORFRFS1}
\strng{fullhash}{CRORFRFS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{CF02}
\field{sortinit}{C}
\field{sortinithash}{C}
\field{abstract}{%
In this work, the phase behavior of linear poly(N-isopropylacrylamide)
(PNIPA) in water--solvent mixtures was investigated. Several solvents,
including low molecular weight alcohols, were selected and phase separation
temperatures were determined through cloud point measurements. All the
studied systems exhibited the cononsolvency effect, i.e. lower PNIPA
compatibility within definite ranges of composition in water-rich mixtures.
However, it was first detected that the coexistence of phase separation
temperatures---a lower critical solution temperature (LCST) with an upper
critical solution temperature (UCST)---at higher solvent concentrations in
most systems, depend on the hydrophobic nature of the solvent. The change
from a LCST to a UCST was correlated with the competition between
polymer--water and polymer--solvent interactions mediated by compositional
factors. The effects produced by the different solvents tested were
qualitatively compared, considering aspects related to their particular
molecular structures, such as the potential to form hydrogen bonds and the
implications of the size and shape of non-polar groups for hydrophobic
hydration.%
}
\verb{doi}
\verb https://doi.org/10.1016/S0032-3861(02)00507-4
\endverb
\field{issn}{0032-3861}
\field{number}{22}
\field{pages}{5879\bibrangedash 5885}
\field{title}{Phase behavior of poly(N-iso\-propyl\-acryl\-amide) in binary
aqueous solutions}
\verb{url}
\verb https://www.sciencedirect.com/science/article/pii/S0032386102005074
\endverb
\field{volume}{43}
\verb{file}
\verb :Costa2002 - Phase Behavior of Poly(N Isopropylacrylamide) in Binary
\verb Aqueous Solutions.pdf:PDF
\endverb
\field{journaltitle}{Polymer}
\field{year}{2002}
\endentry
\entry{Carr1954}{article}{}
\name{author}{2}{}{%
{{hash=CHY}{%
family={Carr},
familyi={C\bibinitperiod},
given={H.\bibnamedelima Y.},
giveni={H\bibinitperiod\bibinitdelim Y\bibinitperiod},
}}%
{{hash=PEM}{%
family={Purcell},
familyi={P\bibinitperiod},
given={E.\bibnamedelima M.},
giveni={E\bibinitperiod\bibinitdelim M\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{American Physical Society}%
}
\keyw{NMR, CPMG, Spin Echoes}
\strng{namehash}{CHYPEM1}
\strng{fullhash}{CHYPEM1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{CP54}
\field{sortinit}{C}
\field{sortinithash}{C}
\verb{doi}
\verb 10.1103/PhysRev.94.630
\endverb
\field{issue}{3}
\field{pages}{630\bibrangedash 638}
\field{title}{Effects of Diffusion on Free Precession in Nuclear Magnetic
Resonance Experiments}
\verb{url}
\verb https://link.aps.org/doi/10.1103/PhysRev.94.630
\endverb
\field{volume}{94}
\verb{file}
\verb :Carr1954 - Effects of Diffusion on Free Precession in Nuclear Magnet
\verb ic Resonance Experiments.pdf:PDF
\endverb
\field{journaltitle}{Physical Review}
\field{month}{05}
\field{year}{1954}
\endentry
\entry{Fujishige1989}{article}{}
\name{author}{3}{}{%
{{hash=FS}{%
family={Fujishige},
familyi={F\bibinitperiod},
given={Shouei},
giveni={S\bibinitperiod},
}}%
{{hash=KK}{%
family={Kubota},
familyi={K\bibinitperiod},
given={K.},
giveni={K\bibinitperiod},
}}%
{{hash=AI}{%
family={Ando},
familyi={A\bibinitperiod},
given={I.},
giveni={I\bibinitperiod},
}}%
}
\keyw{PNIPAM, molecular weight, concentration-dependent, light scattering,
DLS, SLS, thermoresponsive}
\strng{namehash}{FS+1}
\strng{fullhash}{FSKKAI1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Fuj+89}
\field{sortinit}{F}
\field{sortinithash}{F}
\field{abstract}{%
When aqueous solutions of well-fractionated poly(N-isopropylacrylamide)
samples are heated, the polymer molecular dimensions change abruptly at a
critical temperature (~32{$^{\circ}$}C), followed by aggregation of
individual polymer chains dispersed in a state of globular particles to give
an optically detectable phase transition. The transition occurs independently
of either the molecular weight of the polymer (5x10^4 to 840x10^4) or its
concentration (0.01 to 1wt%). This behavior is reminiscent of the thermal
denaturation of proteins in aqueous medium.%
}
\verb{doi}
\verb 10.1021/j100345a085
\endverb
\verb{eprint}
\verb https://doi.org/10.1021/j100345a085
\endverb
\field{number}{8}
\field{pages}{3311\bibrangedash 3313}
\field{title}{Phase transition of aqueous solutions of
poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide)}
\verb{url}
\verb https://doi.org/10.1021/j100345a085
\endverb
\field{volume}{93}
\verb{file}
\verb :Fujishige1989 - Phase Transition of Aqueous Solutions of Poly(N Isop
\verb ropylacrylamide) and Poly(N Isopropylmethacrylamide).pdf:PDF
\endverb
\field{journaltitle}{Journal of Physical Chemistry}
\field{year}{1989}
\endentry
\entry{Gedde2019}{book}{}
\name{author}{2}{}{%
{{hash=GUW}{%
family={Gedde},
familyi={G\bibinitperiod},
given={Ulf\bibnamedelima W.},
giveni={U\bibinitperiod\bibinitdelim W\bibinitperiod},
}}%
{{hash=HMS}{%
family={Hedenqvist},
familyi={H\bibinitperiod},
given={Mikael\bibnamedelima S.},
giveni={M\bibinitperiod\bibinitdelim S\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{Springer Cham}%
}
\keyw{book, polymers}
\strng{namehash}{GUWHMS1}
\strng{fullhash}{GUWHMS1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{GH19}
\field{sortinit}{G}
\field{sortinithash}{G}
\verb{doi}
\verb doi.org/10.1007/978-3-030-29794-7
\endverb
\field{edition}{2}
\field{isbn}{978-3-030-29794-7}
\field{series}{Graduate Texts in Physics}
\field{title}{Fundamental Polymer Science}
\verb{file}
\verb :Gedde2019 - Fundamental Polymer Science.pdf:PDF
\endverb
\field{year}{2019}
\endentry
\entry{Halperin2015}{article}{}
\name{author}{3}{}{%
{{hash=HA}{%
family={Halperin},
familyi={H\bibinitperiod},
given={Avraham},
giveni={A\bibinitperiod},
}}%
{{hash=KM}{%
family={Kr{\"{o}}ger},
familyi={K\bibinitperiod},
given={Martin},
giveni={M\bibinitperiod},
}}%
{{hash=WFM}{%
family={Winnik},
familyi={W\bibinitperiod},
given={Fran{\c{c}}oise\bibnamedelima M.},
giveni={F\bibinitperiod\bibinitdelim M\bibinitperiod},
}}%
}
\keyw{lower critical solution temperature, mesoglobules, metastability,
tacticity, type II phase behavior, PNIPAM, review}
\strng{namehash}{HA+1}
\strng{fullhash}{HAKMWFM1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Hal+15}
\field{sortinit}{H}
\field{sortinithash}{H}
\field{abstract}{%
In 1968, Heskins and Guillet published the first systematic study of the
phase diagram of poly(N-isopropylacrylamide) (PNIPAM), at the time a
{\textquotedblleft}young polymer{\textquotedblright} first synthesized in
1956. Since then, PNIPAM became the leading member of the growing families of
thermoresponsive polymers and of stimuli-responsive,
{\textquotedblleft}smart{\textquotedblright} polymers in general. Its thermal
response is unanimously attributed to its phase behavior. Yet, in spite of
50\hspace{0.25em}years of research, a coherent quantitative picture remains
elusive. In this Review we survey the reported phase diagrams, discuss the
differences and comment on theoretical ideas regarding their possible
origins. We aim to alert the PNIPAM community to open questions in this
reputably mature domain.%
}
\verb{doi}
\verb 10.1002/anie.201506663
\endverb
\verb{eprint}
\verb https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201506663
\endverb
\field{number}{51}
\field{pages}{15342\bibrangedash 15367}
\field{title}{Poly(N-isopropyl\-acrylamide) Phase Diagrams: Fifty Years of
Research}
\verb{url}
\verb https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201506663
\endverb
\field{volume}{54}
\verb{file}
\verb :Halperin2015 - Poly(N Isopropylacrylamide) Phase Diagrams_ Fifty Yea
\verb rs of Research.pdf:PDF
\endverb
\field{journaltitle}{Angewandte Chemie - International Edition}
\field{year}{2015}
\endentry
\entry{Hindman1971}{article}{}
\name{author}{4}{}{%
{{hash=HJC}{%
family={Hindman},
familyi={H\bibinitperiod},
given={J.\bibnamedelima C.},
giveni={J\bibinitperiod\bibinitdelim C\bibinitperiod},
}}%
{{hash=ZAJ}{%
family={Zielen},
familyi={Z\bibinitperiod},
given={A.\bibnamedelima J.},
giveni={A\bibinitperiod\bibinitdelim J\bibinitperiod},
}}%
{{hash=SA}{%
family={Svirmickas},
familyi={S\bibinitperiod},
given={A.},
giveni={A\bibinitperiod},
}}%
{{hash=WM}{%
family={Wood},
familyi={W\bibinitperiod},
given={M.},
giveni={M\bibinitperiod},
}}%
}
\keyw{2h-nmr,17o-nmr,water,d2o,h217o,t1,spin-lattice
relaxation,thermodynamics,entropy,enthalpy,SED,quadrupole coupling
constant,qcc,H2O,nmr}
\strng{namehash}{HJC+1}
\strng{fullhash}{HJCZAJSAWM1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Hin+71}
\field{sortinit}{H}
\field{sortinithash}{H}
\verb{doi}
\verb 10.1063/1.1674887
\endverb
\verb{eprint}
\verb https://doi.org/10.1063/1.1674887
\endverb
\field{number}{2}
\field{pages}{621\bibrangedash 634}
\field{title}{Relaxation Processes in Water. The Spin–Lattice Relaxation
of the Deuteron in D2O and Oxygen‐17 in H217O}
\verb{url}
\verb https://doi.org/10.1063/1.1674887
\endverb
\field{volume}{54}
\verb{file}
\verb :Hindman1971 - Relaxation Processes in Water. the Spin–Lattice Rela
\verb xation of the Deuteron in D2O and Oxygen‐17 in H217O.pdf:PDF
\endverb
\field{journaltitle}{The Journal of Chemical Physics}
\field{year}{1971}
\endentry
\entry{Korde2019}{article}{}
\name{author}{2}{}{%
{{hash=KJM}{%
family={Korde},
familyi={K\bibinitperiod},
given={Jay\bibnamedelima M.},
giveni={J\bibinitperiod\bibinitdelim M\bibinitperiod},
}}%
{{hash=KB}{%
family={Kandasubramanian},
familyi={K\bibinitperiod},
given={Balasubramanian},
giveni={B\bibinitperiod},
}}%
}
\keyw{review, application focused, drug delivery, smart interfaces,
application-focused}
\strng{namehash}{KJMKB1}
\strng{fullhash}{KJMKB1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{KK19}
\field{sortinit}{K}
\field{sortinithash}{K}
\field{abstract}{%
Over the past few decades, reversible responsive polymer materials have
received interest conjointly from academia as well as industry owing to their
ability to adapt to the surrounding environment, change adhesion and
wettability of copious species upon extraneous stimulus, and regulate
transportation of molecules and ions. Stimuli-responsive polymers or
macromolecules also exhibit the ability to convert biochemical and chemical
signals into mechanical, thermal, optical, and electrical signals, and vice
versa, for which they are utilized in an array of applications like
{\textquotedblleft}smart{\textquotedblright} optical systems, drug delivery,
diagnostics, and tissue engineering, in conjunction with coatings, textiles,
biosensors, and microelectromechanical systems. Extensive exploration on
reversible responsive polymeric systems for a variety of engineering
functionalities has been done; however, no collection of all the information
is available as such. This Review consolidates profuse studies of reversible
responsive polymers utilized in an assorted array of functions, inclusive of
sensors, drug delivery, smart and self-healing coatings, etc.%
}
\verb{doi}
\verb 10.1021/acs.iecr.9b00683
\endverb
\verb{eprint}
\verb https://doi.org/10.1021/acs.iecr.9b00683
\endverb
\field{number}{23}
\field{pages}{9709\bibrangedash 9757}
\field{title}{Fundamentals and Effects of Biomimicking Stimuli-Responsive
Polymers for Engineering Functions}
\verb{url}
\verb https://doi.org/10.1021/acs.iecr.9b00683
\endverb
\field{volume}{58}
\verb{file}
\verb :Korde2019 - Fundamentals and Effects of Biomimicking Stimuli Respons
\verb ive Polymers for Engineering Functions.pdf:PDF;:FundamentalsAndEffect
\verb sOfBiomimickingStimuliResponsivePolymersForEngineeringFunctions-Corre
\verb ction_KordeEtAl_IndustrEngineerChemistryResearch2020.pdf:PDF
\endverb
\field{journaltitle}{Industrial and Engineering Chemistry Research}
\field{year}{2019}
\endentry
\entry{Meiboom1958}{article}{}
\name{author}{2}{}{%
{{hash=MS}{%
family={Meiboom},
familyi={M\bibinitperiod},
given={S.},
giveni={S\bibinitperiod},
}}%
{{hash=GD}{%
family={Gill},
familyi={G\bibinitperiod},
given={D.},
giveni={D\bibinitperiod},
}}%
}
\keyw{NMR, CPMG, Spin Echoes}
\strng{namehash}{MSGD1}
\strng{fullhash}{MSGD1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{MG58}
\field{sortinit}{M}
\field{sortinithash}{M}
\verb{doi}
\verb 10.1063/1.1716296
\endverb
\verb{eprint}
\verb https://doi.org/10.1063/1.1716296
\endverb
\field{number}{8}
\field{pages}{688\bibrangedash 691}
\field{title}{Modified Spin-Echo Method for Measuring Nuclear Relaxation
Times}
\verb{url}
\verb https://doi.org/10.1063/1.1716296
\endverb
\field{volume}{29}
\field{journaltitle}{Review of Scientific Instruments}
\field{year}{1958}
\endentry
\entry{PubChem2005NIPAM}{misc}{}
\keyw{synthesis,molecular weights,NIPPA}
\field{labelalpha}{Pub}
\field{sortinit}{P}
\field{sortinithash}{P}
\verb{url}
\verb https://pubchem.ncbi.nlm.nih.gov/compound/Propanamide_-N-isopropyl
\endverb
\field{urlday}{11}
\field{urlmonth}{11}
\field{urlyear}{2024}
\endentry
\entry{Rubinstein2004}{book}{}
\name{author}{2}{}{%
{{hash=RM}{%
family={Rubinstein},
familyi={R\bibinitperiod},
given={Michael},
giveni={M\bibinitperiod},
}}%
{{hash=CRH}{%
family={Colby},
familyi={C\bibinitperiod},
given={Ralph\bibnamedelima H.},
giveni={R\bibinitperiod\bibinitdelim H\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{Oxford University Press}%
}
\strng{namehash}{RMCRH1}
\strng{fullhash}{RMCRH1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{RC04}
\field{sortinit}{R}
\field{sortinithash}{R}
\field{isbn}{019852059x}
\field{title}{Polymer Physics}
\field{year}{2004}
\endentry
\entry{Slichter1990}{book}{}
\name{author}{1}{}{%
{{hash=SCP}{%
family={Slichter},
familyi={S\bibinitperiod},
given={Charles\bibnamedelima P.},
giveni={C\bibinitperiod\bibinitdelim P\bibinitperiod},
}}%
}
\name{editor}{1}{}{%
{{hash=LHKV}{%
family={Lotsch},
familyi={L\bibinitperiod},
given={Helmut K.\bibnamedelima V.},
giveni={H\bibinitperiod\bibinitdelim K\bibinitperiod\bibinitdelim
V\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{Springer Berlin-Heidelberg}%
}
\keyw{NMR,theory,book}
\strng{namehash}{SCP1}
\strng{fullhash}{SCP1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Sli90}
\field{sortinit}{S}
\field{sortinithash}{S}
\verb{doi}
\verb 10.1007/978-3-662-09441-9
\endverb
\field{edition}{Third}
\field{isbn}{978-3-662-09441-9}
\field{series}{Springer series in solid-state sciences}
\field{title}{Principles of Magnetic Resonance}
\verb{file}
\verb :Slichter1963 - Principles of Magnetic Resonance_ with Examples from
\verb Solid State Physics.pdf:PDF
\endverb
\field{year}{1990}
\endentry
\entry{Saeckel2024}{article}{}
\name{author}{5}{}{%
{{hash=SC}{%
family={Säckel},
familyi={S\bibinitperiod},
given={Christoph},
giveni={C\bibinitperiod},
}}%
{{hash=vKR}{%
prefix={von},
prefixi={v\bibinitperiod},
family={Klitzing},
familyi={K\bibinitperiod},
given={Regine},
giveni={R\bibinitperiod},
}}%
{{hash=SR}{%
family={Siegel},
familyi={S\bibinitperiod},
given={Renée},
giveni={R\bibinitperiod},
}}%
{{hash=SJ}{%
family={Senker},
familyi={S\bibinitperiod},
given={Jürgen},
giveni={J\bibinitperiod},
}}%
{{hash=VM}{%
family={Vogel},
familyi={V\bibinitperiod},
given={Michael},
giveni={M\bibinitperiod},
}}%
}
\keyw{NMR,pNIPAM,2H-NMR,spin-lattice relaxation,T1,spin-spin
relaxation,D2O,spectral density,field cycling,confinement,lcst}
\strng{namehash}{SC+1}
\strng{fullhash}{SCKRvSRSJVM1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Sä+24}
\field{sortinit}{S}
\field{sortinithash}{S}
\field{abstract}{%
We use 2H nuclear magnetic resonance to study the dynamics of
deuterated water in a solution of linear poly (N-isopropyl acrylamide)
(pNIPAM, 4 wt%) across its coil-to-globule transition at a lower critical
solubility temperature (LCST) around 32°C. In agreement with previous
studies, we find that the 2H spin-lattice (T1) and, in
particular, spin-spin (T2) relaxation times abruptly decrease when
heating through the LCST, indicating that the polymer collapse causes an
emergence of a water fraction with strongly reduced mobility. To quantify the
dynamics of this slow water fraction, we exploit the fact that 2H
field-cycling relaxometry allows us to measure the spectral density of the
water reorientation in a broad frequency range. We find that the slow water
fraction is characterised by a broad logarithmic Gaussian distribution of
correlation times (σLG = 2.3), which is centred about
τLG ≈ 10–9 s near the LCST. Hence, the common
assumption of a Debye spectral density does not apply. We argue that a minor
water fraction, which is located inside the pNIPAM globules and shows
dynamics governed by the disordered polymer matrix, accompanies a major water
fraction with bulk-like dynamics above the LCST. The former fraction amounts
to about 0.4 water molecules per NIPAM monomer. Several findings indicate
fast exchange between these bound and free water fractions on the
T1 and T2 time scales.%
}
\verb{doi}
\verb 10.3389/frsfm.2024.1379816
\endverb
\field{issn}{2813-0499}
\field{title}{Water dynamics in solutions of linear poly (N-isopropyl
acrylamide) studied by 2H NMR field-cycling relaxometry}
\verb{url}
\verb https://www.frontiersin.org/articles/10.3389/frsfm.2024.1379816
\endverb
\field{volume}{4}
\verb{file}
\verb :Saeckel2024 - Water Dynamics in Solutions of Linear Poly (N Isopropy
\verb l Acrylamide) Studied by 2H NMR Field Cycling Relaxometry.pdf:PDF;:Fr
\verb ontiers_2024_Jan_Published-2024-03-21-SI.PDF:PDF
\endverb
\field{journaltitle}{Frontiers in Soft Matter}
\field{year}{2024}
\endentry
\entry{Saeckel2025}{article}{}
\name{author}{3}{}{%
{{hash=SC}{%
family={Säckel},
familyi={S\bibinitperiod},
given={Christoph},
giveni={C\bibinitperiod},
}}%
{{hash=vKR}{%
prefix={von},
prefixi={v\bibinitperiod},
family={Klitzing},
familyi={K\bibinitperiod},
given={Regine},
giveni={R\bibinitperiod},
}}%
{{hash=VM}{%
family={Vogel},
familyi={V\bibinitperiod},
given={Michael},
giveni={M\bibinitperiod},
}}%
}
\list{publisher}{1}{%
{The Royal Society of Chemistry}%
}
\keyw{NMR,pNIPAM,2H-NMR,spin-lattice relaxation,T1,spin-spin
relaxation,D2O,cononsolvency,field cycling,confinement,aqueous
alcohol,ethanol,h217o,T2,lcst,ucst}
\strng{namehash}{SC+1}
\strng{fullhash}{SCKRvVM1}
\field{labelnamesource}{author}
\field{labeltitlesource}{title}
\field{labelalpha}{Sä+25}
\field{sortinit}{S}
\field{sortinithash}{S}
\verb{doi}
\verb 10.1039/d5sm00055f
\endverb
\field{title}{$^2$H and$^{17}$O NMR studies of solvent dynamics related to
the cononsolvency of poly(N-isopropyl acrylamide) in ethanol-water mixtures}
\verb{url}
\verb http://dx.doi.org/10.1039/D5SM00055F
\endverb
\verb{file}
\verb :/autohome/saeckech/Promotion/Papers/2024_Cononsolvency/Published/2HA
\verb nd17ONMRStudiesOfSolventDynamicsRelatedToTheCononsolvencyOfPolyNIsopr
\verb opylacrylamideInEthanolWaterMixtures_SaeckelEtAl_SoftMatter2025.pdf:P
\verb DF;:/autohome/saeckech/Promotion/Papers/2024_Cononsolvency/Published/
\verb 2HAnd17ONMRStudiesOfSolventDynamicsRelatedToTheCononsolvencyOfPolyNIs
\verb opropylacrylamideInEthanolWaterMixtures_SaeckelEtAl_SoftMatter2025_SI
\verb .pdf:PDF
\endverb
\field{journaltitle}{Soft Matter}
\field{year}{2025}
\endentry
\enddatalist
\endinput