import os
from math import pi
from io import BytesIO
import base64
from bokeh.models.axes import LinearAxis
from django.shortcuts import render
from django.utils.safestring import mark_safe
import re
import numpy as np
from bokeh.plotting import figure
from bokeh.embed import components
from bokeh.models import Label, Node, MathML, Range1d, Span
from isotopapp.models import Isotope
# Create your views here.
def home(request):
isotopes = [i for i in Isotope.objects.all() if (i.gamma != 0 or i.stable)]
return render(request, 'home.html', {'isotopes': [[f"{i.n_nucleons}{i.symbol}", mark_safe(f"{i.n_nucleons}{i.symbol}")] for i in isotopes],})
def sfg(request):
isotopes = [i for i in Isotope.objects.all() if (i.gamma != 0 or i.stable)]
return render(request, 'sfg.html', {'isotopes': [[f"{i.n_nucleons}{i.symbol}", mark_safe(f"{i.n_nucleons}{i.symbol}")] for i in isotopes],})
def extract_isotope_parts(isotope_str):
"""Extracts the number and element from an isotope string (e.g., '23Na')."""
print(isotope_str)
match = re.match(r"(\d+)([A-Za-z]+)", isotope_str)
if not match:
raise ValueError("Invalid isotope format")
return int(match.group(1)), match.group(2)
def isotope_info(isotope, field):
f_larmor = field*isotope.gamma
if isotope.spin_quantum_number.as_integer_ratio()[1]==1:
spin = int(isotope.spin_quantum_number)
else:
spin = mark_safe(f"{isotope.spin_quantum_number.as_integer_ratio()[0]}⁄{isotope.spin_quantum_number.as_integer_ratio()[1]}")
return [isotope.n_nucleons,
mark_safe(f"{isotope.n_nucleons}{isotope.symbol}"),
isotope.name.capitalize(),
f"{f_larmor:.3f}",
spin,
f"{isotope.natural_abundance:.3f}",
f"{isotope.gamma:.5f}",
f"{relative_sensitivity(isotope):.4f}"]
def relative_sensitivity(iso):
riso = Isotope.objects.filter(symbol="H", n_nucleons="1").get()
i1 = riso.spin_quantum_number
g1 = riso.gamma
ab1 = riso.natural_abundance
i2 = float(iso.spin_quantum_number)
g2 = float(iso.gamma)
ab2 = float(iso.natural_abundance)
rel_sens = i2*(i2+1)*g2**3*ab2 / (i1*(i1+1)*g1**3*ab1)
print(rel_sens)
return rel_sens*100
def result(request):
n1, element1 = extract_isotope_parts(request.GET.get('isotope1'))
isotope1 = Isotope.objects.filter(symbol=element1, n_nucleons=n1).get()
freq = float(request.GET.get('freq'))
field_T = freq / isotope1.gamma
script = None
div = None
print(request.GET)
if request.GET.get('range_search') == "":
close_isotopes = []
freq_range = float(request.GET.get('freq_range'))
Isotope.objects.filter()
# calculate the frequency for all isotopes and compile a list of close by isotopes
for isotope in Isotope.objects.all():
if isotope.gamma == 0: continue
if not isotope.stable: continue
f_Larmor = field_T*isotope.gamma
if abs(f_Larmor - freq) <= freq_range:
close_isotopes.append(isotope_info(isotope, field_T))
ans = sorted(close_isotopes, key=lambda x: -float(x[3]))
div = f"Field B0: {field_T:.3f} T"
script = ""
elif request.GET.get('gradient_search') == "":
sample_diameter = 5e-3
gradient = float(request.GET.get('gradient'))
# create a plot (bokeh)
plot = figure(outer_width=500, outer_height=500, match_aspect=True)
plot.ellipse(x=[0], y=[0], width=5, height=5, color="#D5D9FF", alpha=0.8, line_width=1, line_color="black")
plot.ellipse(x=[0], y= [2.5], width=5, height=5, color="#D5D9FF", alpha=0.4, line_width=1, line_color="black")
plot.ellipse(x=[0], y=[-2.5], width=5, height=5, color="#D5D9FF", alpha=0.4, line_width=1, line_color="black")
plot.xaxis[0].axis_label = 'x / mm'
plot.yaxis[0].axis_label = 'z / mm'
close_isotopes = []
for isotope in Isotope.objects.all():
if isotope.gamma == 0: continue
if not isotope.stable: continue
z = (freq/isotope.gamma-field_T)/gradient
if abs(z) <= sample_diameter:
i_info = isotope_info(isotope, field_T)
#i_info[3] = f"{z*1e3:.1f} mm"
close_isotopes.append(i_info)
plot.rect(x=[0], y=[z*1e3], width=5, height=0.2, color="black", alpha=0.6)
label = Label(x=2.6, y=z*1e3, text=f"{isotope.n_nucleons}{isotope.symbol}", text_baseline="middle", text_align="left", text_font_size="16pt")
plot.add_layout(label)
frame_left = Node(target="frame", symbol="left", offset=5)
frame_bottom = Node(target="frame", symbol="bottom", offset=-5)
citation = Label(
x=frame_left,
y=frame_bottom,
anchor="bottom_left",
text=f"{isotope1.n_nucleons}{isotope1.symbol}: {freq:.1f} MHz\ng={gradient:.1f} T/m\n5 mm sample dia.",
padding=5,
border_radius=5,
border_line_color="#D5D9FF", background_fill_color="white",
)
plot.add_layout(citation)
# boke plot
script, div = components(plot)
ans = sorted(close_isotopes, key=lambda x: float(x[3]))
elif request.GET.get('transform') == "":
n2, element2 = extract_isotope_parts(request.GET.get('isotope2'))
isotope2 = Isotope.objects.filter(symbol=element2, n_nucleons=n2).get()
#isotope_info(isotope2, field_T)
ans = [isotope_info(isotope2, field_T), isotope_info(isotope1, field_T) ]
div = f"Field B0: {field_T:.3f} T"
script = ""
else:
ans = []
return render(request, 'result.html', {'ans': ans, 'script': script, 'div': div})
def position(request):
print(request)
n1, element1 = extract_isotope_parts(request.GET.get('isotope1'))
isotope1 = Isotope.objects.filter(symbol=element1, n_nucleons=n1).get()
print(os.path.abspath("."))
data = np.loadtxt(request.GET.get('magnet'))
_z_coords = data[:,0]
_fields = data[:,1]
_gradients = data[:,2]
freq = float(request.GET.get('freq'))
field_T = freq / isotope1.gamma
sample_diameter = 5e-3
gradient = float(request.GET.get('gradient'))
# create a plot (bokeh)
TOOLTIPS = [
("index", "$index"),
("(x,y)", "($x, $y)"),
("desc", "@desc"),
]
plot = figure(outer_width=500, outer_height=500, match_aspect=False, tooltips=TOOLTIPS)
frame_left = Node(target="frame", symbol="left", offset=5)
frame_bottom = Node(target="frame", symbol="bottom", offset=5)
frame_top = Node(target="frame", symbol="top", offset=5)
frame_right = Node(target="frame", symbol="right", offset=5)
#plot.ellipse(x=[0], y=[0], width=5, height=5, color="#D5D9FF", alpha=0.8, line_width=1, line_color="black")
#plot.ellipse(x=[0], y= [2.5], width=5, height=5, color="#D5D9FF", alpha=0.4, line_width=1, line_color="black")
#plot.ellipse(x=[0], y=[-2.5], width=5, height=5, color="#D5D9FF", alpha=0.4, line_width=1, line_color="black")
plot.xaxis[0].axis_label = 'z in mm'
plot.yaxis[0].axis_label = 'B0 in T'
plot.line(x=_z_coords*1e3, y=_fields, color="navy", line_width=2)
plot.yaxis[0].axis_label_text_color = "navy"
plot.y_range = Range1d(-10, 10)
plot.extra_y_ranges['gradient'] = Range1d(-200, 200)
plot.line(x=_z_coords * 1e3, y=_gradients, color="crimson", line_width=2 , y_range_name="gradient")
ax2 = LinearAxis(y_range_name="gradient", axis_label="g in T/m")
ax2.axis_label_text_color = "crimson"
plot.add_layout(ax2, 'left')
# find fields where _fields == field:
pos_threshold_indices = np.where(np.diff(np.sign(_fields + field_T)) != 0)[0]
neg_threshold_indices = np.where(np.diff(np.sign(_fields - field_T)) != 0)[0]
indices = np.concatenate((pos_threshold_indices, neg_threshold_indices))
for p in indices:
#vline = Span(location=_z_coords[p]*1e3, dimension='height', line_color='gray', line_width=1)
#plot.renderers.extend([vline])
label = Label(x=_z_coords[p]*1e3+25,
y=-(np.sign(_z_coords[p]) *10) +(_gradients[p]), text=f"{_z_coords[p]*1e3:.2f},{_gradients[p]:.1f}T/m", text_baseline="middle",
text_align="center", text_font_size="11pt",
border_line_color="#D5D9FF", background_fill_color="white",
y_range_name="gradient")
plot.add_layout(label)
#plot.circle(x=_z_coords[indices]*1e3, y=_fields[indices], radius=2, color="gray")
plot.circle(x=_z_coords[indices]*1e3, y=_gradients[indices], radius=2, color="gray",y_range_name="gradient" )
# plot the B0 field hlines
hline1 = Span(location=field_T, dimension='width', line_color='gray', line_width=2)
label1 = Label(x=frame_right, y=field_T, text=f"{field_T:.1f}T/m",
text_baseline="middle")
hline2 = Span(location=-field_T, dimension='width', line_color='gray', line_width=2)
plot.renderers.extend([hline1, hline2, label1])
close_isotopes = []
for isotope in Isotope.objects.all():
if isotope.gamma == 0: continue
if not isotope.stable: continue
z = (freq/isotope.gamma-field_T)/gradient
if abs(z) <= sample_diameter:
i_info = isotope_info(isotope, field_T)
#i_info[3] = f"{z*1e3:.1f} mm"
close_isotopes.append(i_info)
#plot.rect(x=[0], y=[z*1e3], width=5, height=0.2, color="black", alpha=0.6)
#label = Label(x=2.6, y=z*1e3, text=f"{isotope.n_nucleons}{isotope.symbol}", text_baseline="middle", text_align="left", text_font_size="16pt")
#plot.add_layout(label)
citation = Label(
x=frame_left,
y=frame_bottom,
anchor="bottom_left",
text=f"{isotope1.n_nucleons}{isotope1.symbol}: {freq:.1f} MHz\ng={gradient:.1f} T/m\n5 mm sample dia.",
padding=5,
border_radius=5,
border_line_color="#D5D9FF", background_fill_color="white",
)
plot.add_layout(citation)
# boke plot
script, div = components(plot)
ans = sorted(close_isotopes, key=lambda x: float(x[3]))
return render(request, 'posiiton.html', {'ans': ans, 'script': script, 'div': div})