added full_output option to non gaussian parameter so that correct statistics can be done afterwards
This commit is contained in:
@@ -18,7 +18,7 @@ def log_indices(first: int, last: int, num: int = 100) -> np.ndarray:
|
||||
return np.unique(np.int_(ls) - 1 + first)
|
||||
|
||||
|
||||
@autosave_data(2)
|
||||
@autosave_data(nargs=2, kwargs_keys=('selector', 'segments', 'skip', 'window', 'average', 'points',), version=1.0)
|
||||
def shifted_correlation(
|
||||
function: Callable,
|
||||
frames: Coordinates,
|
||||
@@ -460,6 +460,7 @@ def non_gaussian_parameter(
|
||||
end_frame: CoordinateFrame,
|
||||
trajectory: Coordinates = None,
|
||||
axis: str = "all",
|
||||
full_output = False,
|
||||
) -> float:
|
||||
r"""
|
||||
Calculate the non-Gaussian parameter.
|
||||
@@ -472,30 +473,41 @@ def non_gaussian_parameter(
|
||||
else:
|
||||
vectors = displacements_without_drift(start_frame, end_frame, trajectory)
|
||||
if axis == "all":
|
||||
r = (vectors**2).sum(axis=1)
|
||||
r2 = (vectors**2).sum(axis=1)
|
||||
dimensions = 3
|
||||
elif axis == "xy" or axis == "yx":
|
||||
r = (vectors[:, [0, 1]]**2).sum(axis=1)
|
||||
r2 = (vectors[:, [0, 1]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "xz" or axis == "zx":
|
||||
r = (vectors[:, [0, 2]]**2).sum(axis=1)
|
||||
r2 = (vectors[:, [0, 2]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "yz" or axis == "zy":
|
||||
r = (vectors[:, [1, 2]]**2).sum(axis=1)
|
||||
r2 = (vectors[:, [1, 2]]**2).sum(axis=1)
|
||||
dimensions = 2
|
||||
elif axis == "x":
|
||||
r = vectors[:, 0] ** 2
|
||||
r2 = vectors[:, 0] ** 2
|
||||
dimensions = 1
|
||||
elif axis == "y":
|
||||
r = vectors[:, 1] ** 2
|
||||
r2 = vectors[:, 1] ** 2
|
||||
dimensions = 1
|
||||
elif axis == "z":
|
||||
r = vectors[:, 2] ** 2
|
||||
r2 = vectors[:, 2] ** 2
|
||||
dimensions = 1
|
||||
else:
|
||||
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
||||
|
||||
mean_r = np.mean(r)
|
||||
if mean_r == 0.0:
|
||||
m2 = np.mean(r2)
|
||||
m4 = np.mean(r2**2)
|
||||
if m2 == 0.0:
|
||||
if full_output:
|
||||
return 0.0, 0.0, 0.0
|
||||
else:
|
||||
return 0.0
|
||||
return (np.mean(r**2) / ((1 + 2 / dimensions) * (mean_r ** 2))) - 1
|
||||
|
||||
alpha_2 = (m4 / ((1 + 2 / dimensions) * m2**2)) - 1
|
||||
if full_output:
|
||||
return alpha_2, m2, m4
|
||||
else:
|
||||
return alpha_2
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user