Moved files and reformatted some

This commit is contained in:
2023-12-18 14:47:22 +01:00
parent b4486ff265
commit 62705da6f3
23 changed files with 50 additions and 47 deletions

View File

@ -21,13 +21,13 @@ calling :func:`~mdevaluate.utils.runningmean` as shown below.
from functools import partial
import matplotlib.pyplot as plt
import mdevaluate as md
from src import mdevaluate as md
import tudplot
OW = md.open('/data/niels/sim/water/bulk/260K', trajectory='out/*.xtc').subset(atom_name='OW')
t, Fqt = md.correlation.shifted_correlation(
partial(md.correlation.isf, q=22.7),
t, Fqt = src.mdevaluate.correlation.shifted_correlation(
partial(src.mdevaluate.correlation.isf, q=22.7),
OW,
average=False,
window=0.2,

View File

@ -8,23 +8,23 @@ Additionally a KWW function is fitted to the results.
from functools import partial
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import mdevaluate as md
from src import mdevaluate as md
import tudplot
OW = md.open('/data/niels/sim/water/bulk/260K', trajectory='out/*.xtc').subset(atom_name='OW')
t, S = md.correlation.shifted_correlation(
partial(md.correlation.isf, q=22.7),
t, S = src.mdevaluate.correlation.shifted_correlation(
partial(src.mdevaluate.correlation.isf, q=22.7),
OW,
average=True
)
# Only include data-points of the alpha-relaxation for the fit
mask = t > 3e-1
fit, cov = curve_fit(md.functions.kww, t[mask], S[mask])
tau = md.functions.kww_1e(*fit)
fit, cov = curve_fit(src.mdevaluate.functions.kww, t[mask], S[mask])
tau = src.mdevaluate.functions.kww_1e(*fit)
tudplot.activate()
plt.figure()
plt.plot(t, S, '.', label='ISF of Bulk Water')
plt.plot(t, md.functions.kww(t, *fit), '-', label=r'KWW, $\tau$={:.2f}ps'.format(tau))
plt.plot(t, src.mdevaluate.functions.kww(t, *fit), '-', label=r'KWW, $\tau$={:.2f}ps'.format(tau))
plt.xscale('log')
plt.legend()

View File

@ -8,7 +8,7 @@ In this case the bins describe the shortest distance of an oxygen atom to any wa
import numpy as np
import matplotlib.pyplot as plt
import mdevaluate as md
from src import mdevaluate as md
import tudplot
from scipy import spatial
from scipy.optimize import curve_fit
@ -73,7 +73,7 @@ wall_atoms = wall_atoms[dist < 0.35]
SW = traj.subset(indices = wall_atoms)
from functools import partial
func = partial(md.correlation.isf, q=22.7)
func = partial(src.mdevaluate.correlation.isf, q=22.7)
#selector function to choose liquid oxygens with a certain distance to wall atoms
def selector_func(coords, lindices, windices, dmin, dmax):
@ -93,9 +93,9 @@ for i in range(len(bins)-1):
selector = partial(selector_func,lindices=LO.atom_subset.indices[0],
windices=SW.atom_subset.indices[0],dmin=bins[i],
dmax = bins[i+1])
t, S[i] = md.correlation.shifted_correlation(
t, S[i] = src.mdevaluate.correlation.shifted_correlation(
func, traj,segments=50, skip=0.1,average=True,
correlation=md.correlation.subensemble_correlation(selector),
correlation=src.mdevaluate.correlation.subensemble_correlation(selector),
description=str(bins[i])+','+str(bins[i+1]))
taus = np.zeros(len(S))
@ -105,10 +105,10 @@ for i,s in enumerate(S):
pl = plt.plot(t, s, '.', label='d = ' + str(binpos[i]) + ' nm')
#only includes the relevant data for 1/e fitting
mask = s < 0.6
fit, cov = curve_fit(md.functions.kww, t[mask], s[mask],
fit, cov = curve_fit(src.mdevaluate.functions.kww, t[mask], s[mask],
p0=[1.0,t[t>1/np.e][-1],0.5])
taus[i] = md.functions.kww_1e(*fit)
plt.plot(t, md.functions.kww(t, *fit), c=pl[0].get_color())
taus[i] = src.mdevaluate.functions.kww_1e(*fit)
plt.plot(t, src.mdevaluate.functions.kww(t, *fit), c=pl[0].get_color())
plt.xscale('log')
plt.legend()
#plt.show()

View File

@ -6,7 +6,7 @@ This example reads an Gromacs energy file and plots the evolultion and mean of t
"""
from matplotlib import pyplot as plt
import mdevaluate as md
from src import mdevaluate as md
import tudplot
tudplot.activate()