From c89cead81c67c8c24856f8fc1ba71178d513afff Mon Sep 17 00:00:00 2001 From: Sebastian Kloth Date: Tue, 5 Mar 2024 13:57:55 +0100 Subject: [PATCH] Moved KDTree build up in its own function and made find_maxima query for each point separately. --- src/mdevaluate/extra/free_energy_landscape.py | 49 +++++++++---------- 1 file changed, 23 insertions(+), 26 deletions(-) diff --git a/src/mdevaluate/extra/free_energy_landscape.py b/src/mdevaluate/extra/free_energy_landscape.py index 5190d5c..85a8c25 100644 --- a/src/mdevaluate/extra/free_energy_landscape.py +++ b/src/mdevaluate/extra/free_energy_landscape.py @@ -47,6 +47,21 @@ def _pbc_points_reduced( return coordinates_pbc, indices +def _build_tree(points, box, r_max, pore_geometry): + if np.all(np.diag(np.diag(box)) == box): + tree = KDTree(points, boxsize=box) + points_pbc_index = None + else: + points_pbc, points_pbc_index = _pbc_points_reduced( + points, + pore_geometry, + box, + thickness=r_max + 0.01, + ) + tree = KDTree(points_pbc) + return tree, points_pbc_index + + def occupation_matrix( trajectory: Coordinates, edge_length: float = 0.05, @@ -113,23 +128,14 @@ def find_maxima( maxima_df = occupation_df.copy() maxima_df["maxima"] = None points = np.array(maxima_df[["x", "y", "z"]]) - if np.all(np.diag(np.diag(box)) == box): - tree = KDTree(points, boxsize=box) - all_neighbors = tree.query_ball_point(points, radius) - else: - points_pbc, points_pbc_index = _pbc_points_reduced( - points, - pore_geometry, - box, - thickness=radius + 0.01, - ) - tree = KDTree(points_pbc) - all_neighbors = tree.query_ball_point(points, radius) - all_neighbors = points_pbc_index[all_neighbors] + tree, points_pbc_index = _build_tree(points, box, radius, pore_geometry) for i in range(len(maxima_df)): if maxima_df.loc[i, "maxima"] is not None: continue - neighbors = np.array(all_neighbors[i]) + maxima_pos = maxima_df.loc[i, ["x", "y", "z"]] + neighbors = np.array(tree.query_ball_point(maxima_pos, radius)) + if points_pbc_index is not None: + neighbors = points_pbc_index[neighbors] neighbors = neighbors[neighbors != i] if len(neighbors) == 0: maxima_df.loc[i, "maxima"] = True @@ -154,16 +160,7 @@ def _calc_energies( nodes: int = 8, ) -> NDArray: points = np.array(maxima_df[["x", "y", "z"]]) - if np.all(np.diag(np.diag(box)) == box): - tree = KDTree(points, boxsize=box) - else: - points_pbc, points_pbc_index = _pbc_points_reduced( - points, - pore_geometry, - box, - thickness=bins[-1] + 0.01, - ) - tree = KDTree(points_pbc) + tree, points_pbc_index = _build_tree(points, box, bins[-1], pore_geometry) maxima = maxima_df.loc[maxima_indices, ["x", "y", "z"]] maxima_occupations = np.array(maxima_df.loc[maxima_indices, "occupation"]) num_of_neighbors = np.max( @@ -187,7 +184,7 @@ def _calc_energies( all_occupied_bins_hist = [] if distances.ndim == 1: current_distances = distances[1:][distances[1:] <= bins[-1]] - if np.all(np.diag(np.diag(box)) == box): + if points_pbc_index is None: current_indices = indices[1:][distances[1:] <= bins[-1]] else: current_indices = points_pbc_index[indices[1:][distances[1:] <= bins[-1]]] @@ -201,7 +198,7 @@ def _calc_energies( return result for i, maxima_occupation in enumerate(maxima_occupations): current_distances = distances[i, 1:][distances[i, 1:] <= bins[-1]] - if np.all(np.diag(np.diag(box)) == box): + if points_pbc_index is None: current_indices = indices[i, 1:][distances[i, 1:] <= bins[-1]] else: current_indices = points_pbc_index[