Refactored next_neighbors and added type hints
This commit is contained in:
parent
fd60cae3b8
commit
97e29e6de3
@ -10,7 +10,7 @@ from .checksum import checksum
|
||||
from .coordinates import CoordinateFrame
|
||||
|
||||
|
||||
def compare_regex(str_list: list[str], exp: str):
|
||||
def compare_regex(str_list: list[str], exp: str) -> np.ndarray:
|
||||
"""
|
||||
Compare a list of strings with a regular expression.
|
||||
"""
|
||||
@ -176,7 +176,7 @@ class AtomSubset:
|
||||
return checksum(self.description)
|
||||
|
||||
|
||||
def gyration_radius(position: CoordinateFrame):
|
||||
def gyration_radius(position: CoordinateFrame) -> np.ndarray:
|
||||
r"""
|
||||
Calculates a list of all radii of gyration of all molecules given in the coordinate
|
||||
frame, weighted with the masses of the individual atoms.
|
||||
@ -185,7 +185,8 @@ def gyration_radius(position: CoordinateFrame):
|
||||
position: Coordinate frame object
|
||||
|
||||
..math::
|
||||
R_G = \left(\frac{\sum_{i=1}^{n} m_i |\vec{r_i} - \vec{r_{COM}}|^2 }{\sum_{i=1}^{n} m_i }
|
||||
R_G = \left(\frac{\sum_{i=1}^{n} m_i |\vec{r_i}
|
||||
- \vec{r_{COM}}|^2 }{\sum_{i=1}^{n} m_i }
|
||||
\rigth)^{\frac{1}{2}}
|
||||
"""
|
||||
gyration_radii = np.array([])
|
||||
@ -207,7 +208,7 @@ def layer_of_atoms(
|
||||
thickness: float,
|
||||
plane_normal: npt.ArrayLike,
|
||||
plane_offset: Optional[npt.ArrayLike] = np.array([0, 0, 0]),
|
||||
):
|
||||
) -> np.array:
|
||||
if plane_offset is None:
|
||||
np.array([0, 0, 0])
|
||||
atoms = atoms - plane_offset
|
||||
@ -215,45 +216,14 @@ def layer_of_atoms(
|
||||
return np.abs(distance) <= thickness
|
||||
|
||||
|
||||
def distance_to_atoms(ref, atoms, box=None):
|
||||
"""Get the minimal distance from atoms to ref.
|
||||
The result is an array of with length == len(atoms)
|
||||
"""
|
||||
out = np.empty(atoms.shape[0])
|
||||
for i, atom in enumerate(atoms):
|
||||
diff = (pbc_diff(atom, ref, box) ** 2).sum(axis=1).min()
|
||||
out[i] = np.sqrt(diff)
|
||||
return out
|
||||
|
||||
|
||||
def distance_to_atoms_KDtree(ref, atoms, box=None, thickness=None):
|
||||
"""
|
||||
Get the minimal distance from atoms to ref.
|
||||
The result is an array of with length == len(atoms)
|
||||
Can be faster than distance_to_atoms.
|
||||
Thickness defaults to box/5. If this is too small results may be wrong.
|
||||
If box is not given then periodic boundary conditions are not applied!
|
||||
"""
|
||||
if thickness == None:
|
||||
thickness = box / 5
|
||||
if box is not None:
|
||||
start_coords = np.copy(atoms) % box
|
||||
all_frame_coords = pbc_points(ref, box, thickness=thickness)
|
||||
else:
|
||||
start_coords = atoms
|
||||
all_frame_coords = ref
|
||||
|
||||
tree = KDTree(all_frame_coords)
|
||||
return tree.query(start_coords)[0]
|
||||
|
||||
|
||||
def next_neighbors(
|
||||
atoms,
|
||||
query_atoms=None,
|
||||
number_of_neighbors=1,
|
||||
distance_upper_bound=np.inf,
|
||||
distinct=False,
|
||||
):
|
||||
atoms: CoordinateFrame,
|
||||
query_atoms: Optional[CoordinateFrame] = None,
|
||||
number_of_neighbors: int = 1,
|
||||
distance_upper_bound: float = np.inf,
|
||||
distinct: bool = False,
|
||||
**kwargs
|
||||
) -> (np.ndarray, np.ndarray):
|
||||
"""
|
||||
Find the N next neighbors of a set of atoms.
|
||||
|
||||
@ -269,15 +239,29 @@ def next_neighbors(
|
||||
If this is true, the atoms and query atoms are taken as distinct sets of
|
||||
atoms
|
||||
"""
|
||||
tree = KDTree(atoms)
|
||||
dnn = 0
|
||||
if query_atoms is None:
|
||||
query_atoms = atoms
|
||||
dnn = 1
|
||||
elif not distinct:
|
||||
dnn = 1
|
||||
dist, indices = tree.query(
|
||||
query_atoms,
|
||||
number_of_neighbors + dnn,
|
||||
distance_upper_bound=distance_upper_bound,
|
||||
|
||||
box = atoms.box
|
||||
if np.all(np.diag(np.diag(box)) == box):
|
||||
atoms = atoms % np.diag(box)
|
||||
tree = KDTree(atoms, boxsize=np.diag(box))
|
||||
distances, indices = tree.query(
|
||||
query_atoms, number_of_neighbors, distance_upper_bound=distance_upper_bound
|
||||
)
|
||||
return indices[:, dnn:]
|
||||
else:
|
||||
atoms_pbc, atoms_pbc_index = pbc_points(
|
||||
query_atoms, box, thickness=distance_upper_bound+0.1, index=True, **kwargs
|
||||
)
|
||||
tree = KDTree(atoms_pbc)
|
||||
distances, indices = tree.query(
|
||||
query_atoms, number_of_neighbors, distance_upper_bound=distance_upper_bound
|
||||
)
|
||||
indices = atoms_pbc_index[indices]
|
||||
|
||||
return distances[:, dnn:], indices[:, dnn:]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user