Applied black formatter
This commit is contained in:
parent
a7da9d7ec8
commit
9b45a1a7bd
@ -23,9 +23,9 @@ def a_ij(atoms, N=4, l=3):
|
|||||||
qilm = np.average(qijlm, axis=1)
|
qilm = np.average(qijlm, axis=1)
|
||||||
qil = np.sum(qilm * np.conj(qilm), axis=-1) ** 0.5
|
qil = np.sum(qilm * np.conj(qilm), axis=-1) ** 0.5
|
||||||
aij = (
|
aij = (
|
||||||
np.sum(qilm[:, np.newaxis, :] * np.conj(qilm[indices]), axis=-1)
|
np.sum(qilm[:, np.newaxis, :] * np.conj(qilm[indices]), axis=-1)
|
||||||
/ qil[:, np.newaxis]
|
/ qil[:, np.newaxis]
|
||||||
/ qil[indices]
|
/ qil[indices]
|
||||||
)
|
)
|
||||||
return np.real(aij), indices
|
return np.real(aij), indices
|
||||||
|
|
||||||
|
@ -590,4 +590,4 @@ def cylindrical_coordinates(frame, origin=None):
|
|||||||
z = frame[:, 2]
|
z = frame[:, 2]
|
||||||
radius = (x**2 + y**2) ** 0.5
|
radius = (x**2 + y**2) ** 0.5
|
||||||
phi = np.arctan2(y, x)
|
phi = np.arctan2(y, x)
|
||||||
return np.array([radius, phi, z]).T
|
return np.array([radius, phi, z]).T
|
||||||
|
@ -114,11 +114,12 @@ def calc_gr(
|
|||||||
as large as possible, depending on the available memory.
|
as large as possible, depending on the available memory.
|
||||||
returnx (opt.): If True the x ordinate of the histogram is returned.
|
returnx (opt.): If True the x ordinate of the histogram is returned.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def gr_frame(
|
def gr_frame(
|
||||||
atoms_a: CoordinateFrame,
|
atoms_a: CoordinateFrame,
|
||||||
atoms_b: CoordinateFrame,
|
atoms_b: CoordinateFrame,
|
||||||
bins: ArrayLike,
|
bins: ArrayLike,
|
||||||
remove_intra: bool = False,
|
remove_intra: bool = False,
|
||||||
):
|
):
|
||||||
box = atoms_b.box
|
box = atoms_b.box
|
||||||
n = len(atoms_a) / np.prod(np.diag(box))
|
n = len(atoms_a) / np.prod(np.diag(box))
|
||||||
@ -434,6 +435,7 @@ def hbonds(
|
|||||||
else:
|
else:
|
||||||
return pairs[is_bond]
|
return pairs[is_bond]
|
||||||
|
|
||||||
|
|
||||||
def calc_cluster_sizes(frame, r_max=0.35):
|
def calc_cluster_sizes(frame, r_max=0.35):
|
||||||
frame_PBC, indices_PBC = pbc_points(
|
frame_PBC, indices_PBC = pbc_points(
|
||||||
frame, frame.box, thickness=r_max + 0.1, index=True
|
frame, frame.box, thickness=r_max + 0.1, index=True
|
||||||
|
@ -6,6 +6,7 @@ from typing import Iterable
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
from tables import NoSuchNodeError
|
from tables import NoSuchNodeError
|
||||||
|
|
||||||
|
|
||||||
@dataclass(kw_only=True)
|
@dataclass(kw_only=True)
|
||||||
class MDSystem(abc.ABC):
|
class MDSystem(abc.ABC):
|
||||||
load_only_results: bool = False
|
load_only_results: bool = False
|
||||||
|
@ -35,17 +35,17 @@ def five_point_stencil(xdata, ydata):
|
|||||||
See: https://en.wikipedia.org/wiki/Five-point_stencil
|
See: https://en.wikipedia.org/wiki/Five-point_stencil
|
||||||
"""
|
"""
|
||||||
return xdata[2:-2], (
|
return xdata[2:-2], (
|
||||||
(-ydata[4:] + 8 * ydata[3:-1] - 8 * ydata[1:-3] + ydata[:-4])
|
(-ydata[4:] + 8 * ydata[3:-1] - 8 * ydata[1:-3] + ydata[:-4])
|
||||||
/ (3 * (xdata[4:] - xdata[:-4]))
|
/ (3 * (xdata[4:] - xdata[:-4]))
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def filon_fourier_transformation(
|
def filon_fourier_transformation(
|
||||||
time,
|
time,
|
||||||
correlation,
|
correlation,
|
||||||
frequencies=None,
|
frequencies=None,
|
||||||
derivative="linear",
|
derivative="linear",
|
||||||
imag=True,
|
imag=True,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Fourier-transformation for slow varrying functions. The filon algorithmus is
|
Fourier-transformation for slow varrying functions. The filon algorithmus is
|
||||||
@ -89,25 +89,25 @@ def filon_fourier_transformation(
|
|||||||
else:
|
else:
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
'Invalid approximation method {}. Possible values are "linear", "stencil" '
|
'Invalid approximation method {}. Possible values are "linear", "stencil" '
|
||||||
'or a list of values.'
|
"or a list of values."
|
||||||
)
|
)
|
||||||
time = time.reshape(-1, 1)
|
time = time.reshape(-1, 1)
|
||||||
|
|
||||||
integral = (
|
integral = (
|
||||||
np.cos(frequencies * time[1:]) - np.cos(frequencies * time[:-1])
|
np.cos(frequencies * time[1:]) - np.cos(frequencies * time[:-1])
|
||||||
) / frequencies ** 2
|
) / frequencies**2
|
||||||
fourier = (derivative * integral).sum(axis=0)
|
fourier = (derivative * integral).sum(axis=0)
|
||||||
|
|
||||||
if imag:
|
if imag:
|
||||||
integral = (
|
integral = (
|
||||||
1j
|
1j
|
||||||
* (np.sin(frequencies * time[1:]) - np.sin(frequencies * time[:-1]))
|
* (np.sin(frequencies * time[1:]) - np.sin(frequencies * time[:-1]))
|
||||||
/ frequencies ** 2
|
/ frequencies**2
|
||||||
)
|
)
|
||||||
fourier = (
|
fourier = (
|
||||||
fourier
|
fourier
|
||||||
+ (derivative * integral).sum(axis=0)
|
+ (derivative * integral).sum(axis=0)
|
||||||
+ 1j * correlation[0] / frequencies
|
+ 1j * correlation[0] / frequencies
|
||||||
)
|
)
|
||||||
|
|
||||||
return (
|
return (
|
||||||
@ -498,5 +498,5 @@ def timing(function):
|
|||||||
time_needed = end_time - start_time
|
time_needed = end_time - start_time
|
||||||
print(f"Finished in {int(time_needed // 60)} min " f"{int(time_needed % 60)} s")
|
print(f"Finished in {int(time_needed // 60)} min " f"{int(time_needed % 60)} s")
|
||||||
return result
|
return result
|
||||||
return wrap
|
|
||||||
|
|
||||||
|
return wrap
|
||||||
|
Loading…
Reference in New Issue
Block a user