From a4b1105c54978a80363d0d73daa07dd6b41c0fff Mon Sep 17 00:00:00 2001 From: sebastiankloth Date: Fri, 16 Jun 2023 08:41:19 +0200 Subject: [PATCH] Removed try except block from shifted_correlation. --- mdevaluate/correlation.py | 32 +++++++++++++++----------------- 1 file changed, 15 insertions(+), 17 deletions(-) diff --git a/mdevaluate/correlation.py b/mdevaluate/correlation.py index 74a4bc3..fc7c931 100644 --- a/mdevaluate/correlation.py +++ b/mdevaluate/correlation.py @@ -10,10 +10,12 @@ from .utils import filon_fourier_transformation, coherent_sum, histogram from .pbc import pbc_diff from .logging import logger + def set_has_counter(func): func.has_counter = True return func + def log_indices(first, last, num=100): ls = np.logspace(0, np.log10(last - first + 1), num=num) return np.unique(np.int_(ls) - 1 + first) @@ -26,7 +28,6 @@ def correlation(function, frames): def subensemble_correlation(selector_function, correlation_function=correlation): - def c(function, frames): iterator = iter(frames) start_frame = next(iterator) @@ -128,7 +129,7 @@ def shifted_correlation(function, frames, selector=None, segments=10, Calculating the mean square displacement of a coordinates object named ``coords``: >>> time, data = shifted_correlation(msd, coords) - """ + """ def get_correlation(start_frame, idx, selector=None): shifted_idx = idx + start_frame if selector: @@ -156,26 +157,22 @@ def shifted_correlation(function, frames, selector=None, segments=10, idx = np.unique(np.int_(ls) - 1) t = np.array([frames[i].time for i in idx]) - frames[0].time - if nodes==1: + if nodes == 1: result = np.array([get_correlation(start_frame, idx=idx, - selector=selector) - for start_frame in start_frames]) + selector=selector) + for start_frame in start_frames]) else: pool = ProcessPool(nodes=nodes) - try: - result = np.array(pool.map(partial(get_correlation, idx=idx, - selector=selector), - start_frames)) - except Exception: - logger.warning("Something went wrong while calculating the shifted correlation!") - finally: - pool.terminate() - pool.restart() + result = np.array(pool.map(partial(get_correlation, idx=idx, + selector=selector), + start_frames)) + pool.terminate() + pool.restart() if average == True: clean_result = [] for entry in result: - if np.all(entry==0): + if np.all(entry == 0): continue else: clean_result.append(entry) @@ -206,14 +203,15 @@ def isf(start, frame, q, box=None): def rotational_autocorrelation(onset, frame, order=2): """ - Compute the rotaional autocorrelation of the legendre polynamial for the given vectors. + Compute the rotational autocorrelation of the legendre polynomial for the + given vectors. Args: onset, frame: CoordinateFrames of vectors order (opt.): Order of the legendre polynomial. Returns: - Skalar value of the correltaion function. + Scalar value of the correlation function. """ scalar_prod = (onset * frame).sum(axis=-1) poly = legendre(order)