Added type hints, adjusted imports, and doc strings

This commit is contained in:
Sebastian Kloth 2023-12-26 12:55:53 +01:00
parent c00fc78f23
commit eed94cfca6

View File

@ -1,13 +1,14 @@
from functools import partial, lru_cache, wraps from functools import partial, wraps
from copy import copy from copy import copy
from .logging import logger from .logging import logger
from typing import Optional, Callable
import numpy as np import numpy as np
from scipy.spatial import cKDTree, KDTree import numpy.typing as npt
from .atoms import AtomSubset from .atoms import AtomSubset
from .pbc import whole, nojump, pbc_diff from .pbc import whole, nojump, pbc_diff
from .utils import mask2indices, singledispatchmethod from .utils import singledispatchmethod
from .checksum import checksum from .checksum import checksum
@ -15,104 +16,6 @@ class UnknownCoordinatesMode(Exception):
pass pass
def rotate_axis(coords, axis):
"""
Rotate a set of coordinates to a given axis.
"""
axis = np.array(axis) / np.linalg.norm(axis)
zaxis = np.array([0, 0, 1])
if (axis == zaxis).sum() == 3:
return coords
rotation_axis = np.cross(axis, zaxis)
rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
theta = np.arccos(axis @ zaxis / np.linalg.norm(axis))
# return theta/pi, rotation_axis
ux, uy, uz = rotation_axis
cross_matrix = np.array([[0, -uz, uy], [uz, 0, -ux], [-uy, ux, 0]])
rotation_matrix = (
np.cos(theta) * np.identity(len(axis))
+ (1 - np.cos(theta))
* rotation_axis.reshape(-1, 1)
@ rotation_axis.reshape(1, -1)
+ np.sin(theta) * cross_matrix
)
if len(coords.shape) == 2:
rotated = np.array([rotation_matrix @ xyz for xyz in coords])
else:
rotated = rotation_matrix @ coords
return rotated
def spherical_radius(frame, origin=None):
"""
Transform a frame of cartesian coordinates into the sperical radius.
If origin=None the center of the box is taken as the coordinates origin.
"""
if origin is None:
origin = frame.box.diagonal() / 2
return ((frame - origin) ** 2).sum(axis=-1) ** 0.5
def polar_coordinates(x, y):
"""Convert cartesian to polar coordinates."""
radius = (x**2 + y**2) ** 0.5
phi = np.arctan2(y, x)
return radius, phi
def spherical_coordinates(x, y, z):
"""Convert cartesian to spherical coordinates."""
xy, phi = polar_coordinates(x, y)
radius = (x**2 + y**2 + z**2) ** 0.5
theta = np.arccos(z / radius)
return radius, phi, theta
def radial_selector(frame, coordinates, rmin, rmax):
"""
Return a selection of all atoms with radius in the interval [rmin, rmax].
"""
crd = coordinates[frame.step]
rad, _ = polar_coordinates(crd[:, 0], crd[:, 1])
selector = (rad >= rmin) & (rad <= rmax)
return mask2indices(selector)
def selector_radial_cylindrical(atoms, r_min, r_max, origin=None):
box = atoms.box
atoms = atoms % np.diag(box)
if origin is None:
origin = [box[0, 0] / 2, box[1, 1] / 2, box[2, 2] / 2]
r_vec = (atoms - origin)[:, :2]
r = np.linalg.norm(r_vec, axis=1)
index = np.argwhere((r >= r_min) * (r < r_max))
return index.flatten()
def spatial_selector(frame, transform, rmin, rmax):
"""
Select a subset of atoms which have a radius between rmin and rmax.
Coordinates are filtered by the condition::
rmin <= transform(frame) <= rmax
Args:
frame: The coordinates of the actual trajectory
transform:
A function that transforms the coordinates of the frames into
the one-dimensional spatial coordinate (e.g. radius).
rmin: Minimum value of the radius
rmax: Maximum value of the radius
"""
r = transform(frame)
selector = (rmin <= r) & (rmax >= r)
return mask2indices(selector)
class CoordinateFrame(np.ndarray): class CoordinateFrame(np.ndarray):
_known_modes = ("pbc", "whole", "nojump") _known_modes = ("pbc", "whole", "nojump")
@ -250,7 +153,8 @@ class Coordinates:
def mode(self, val): def mode(self, val):
if val in CoordinateFrame._known_modes: if val in CoordinateFrame._known_modes:
logger.warn( logger.warn(
"Changing the Coordinates mode directly is deprecated. Use Coordinates.%s instead, which returns a copy.", "Changing the Coordinates mode directly is deprecated. "
"Use Coordinates.%s instead, which returns a copy.",
val, val,
) )
self._mode = val self._mode = val
@ -414,30 +318,111 @@ class CoordinatesMap:
return CoordinatesMap(self.coordinates.pbc, self.function) return CoordinatesMap(self.coordinates.pbc, self.function)
def map_coordinates(func): def rotate_axis(coords: npt.ArrayLike, axis: npt.ArrayLike) -> np.ndarray:
"""
Rotate a set of coordinates to a given axis.
"""
axis = np.array(axis) / np.linalg.norm(axis)
zaxis = np.array([0, 0, 1])
if (axis == zaxis).sum() == 3:
return coords
rotation_axis = np.cross(axis, zaxis)
rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
theta = np.arccos(axis @ zaxis / np.linalg.norm(axis))
# return theta/pi, rotation_axis
ux, uy, uz = rotation_axis
cross_matrix = np.array([[0, -uz, uy], [uz, 0, -ux], [-uy, ux, 0]])
rotation_matrix = (
np.cos(theta) * np.identity(len(axis))
+ (1 - np.cos(theta))
* rotation_axis.reshape(-1, 1)
@ rotation_axis.reshape(1, -1)
+ np.sin(theta) * cross_matrix
)
if len(coords.shape) == 2:
rotated = np.array([rotation_matrix @ xyz for xyz in coords])
else:
rotated = rotation_matrix @ coords
return rotated
def spherical_radius(
frame: CoordinateFrame, origin: Optional[npt.ArrayLike] = None
) -> np.ndarray:
"""
Transform a frame of cartesian coordinates into the spherical radius.
If origin=None, the center of the box is taken as the coordinates' origin.
"""
if origin is None:
origin = frame.box.diagonal() / 2
return ((frame - origin) ** 2).sum(axis=-1) ** 0.5
def polar_coordinates(x: npt.ArrayLike, y: npt.ArrayLike) -> (np.ndarray, np.ndarray):
"""Convert cartesian to polar coordinates."""
radius = (x**2 + y**2) ** 0.5
phi = np.arctan2(y, x)
return radius, phi
def spherical_coordinates(
x: npt.ArrayLike, y: npt.ArrayLike, z: npt.ArrayLike
) -> (np.ndarray, np.ndarray, np.ndarray):
"""Convert cartesian to spherical coordinates."""
xy, phi = polar_coordinates(x, y)
radius = (x**2 + y**2 + z**2) ** 0.5
theta = np.arccos(z / radius)
return radius, phi, theta
def selector_radial_cylindrical(
atoms: CoordinateFrame,
r_min: float,
r_max: float,
origin: Optional[npt.ArrayLike] = None,
) -> np.ndarray:
box = atoms.box
atoms = atoms % np.diag(box)
if origin is None:
origin = [box[0, 0] / 2, box[1, 1] / 2, box[2, 2] / 2]
r_vec = (atoms - origin)[:, :2]
r = np.linalg.norm(r_vec, axis=1)
index = np.argwhere((r >= r_min) * (r < r_max))
return index.flatten()
def map_coordinates(
func: Callable[[CoordinateFrame, ...], np.ndarray]
) -> Callable[..., CoordinatesMap]:
@wraps(func) @wraps(func)
def wrapped(coordinates, **kwargs): def wrapped(coordinates: Coordinates, **kwargs) -> CoordinatesMap:
return CoordinatesMap(coordinates, partial(func, **kwargs)) return CoordinatesMap(coordinates, partial(func, **kwargs))
return wrapped return wrapped
@map_coordinates @map_coordinates
def center_of_masses(coordinates, atoms=None, shear: bool = False): def center_of_masses(
frame: CoordinateFrame, atoms=None, shear: bool = False
) -> np.ndarray:
if atoms is None: if atoms is None:
atoms = list(range(len(coordinates))) atoms = list(range(len(frame)))
res_ids = coordinates.residue_ids[atoms] res_ids = frame.residue_ids[atoms]
masses = coordinates.masses[atoms] masses = frame.masses[atoms]
if shear: if shear:
coords = coordinates[atoms] coords = frame[atoms]
box = coords.box box = frame.box
sort_ind = res_ids.argsort(kind="stable") sort_ind = res_ids.argsort(kind="stable")
i = np.concatenate([[0], np.where(np.diff(res_ids[sort_ind]) > 0)[0] + 1]) i = np.concatenate([[0], np.where(np.diff(res_ids[sort_ind]) > 0)[0] + 1])
coms = coords[sort_ind[i]][res_ids - min(res_ids)] coms = coords[sort_ind[i]][res_ids - min(res_ids)]
cor = pbc_diff(coords, coms, box) cor = pbc_diff(coords, coms, box)
coords = coms + cor coords = coms + cor
else: else:
coords = coordinates.whole[atoms] coords = frame.whole[atoms]
mask = np.bincount(res_ids)[1:] != 0 mask = np.bincount(res_ids)[1:] != 0
positions = np.array( positions = np.array(
[ [
@ -450,12 +435,14 @@ def center_of_masses(coordinates, atoms=None, shear: bool = False):
@map_coordinates @map_coordinates
def pore_coordinates(coordinates, origin, sym_axis="z"): def pore_coordinates(
frame: CoordinateFrame, origin: npt.ArrayLike, sym_axis: str = "z"
) -> np.ndarray:
""" """
Map coordinates of a pore simulation so the pore has cylindrical symmetry. Map coordinates of a pore simulation so the pore has cylindrical symmetry.
Args: Args:
coordinates: Coordinates of the simulation frame: Coordinates of the simulation
origin: Origin of the pore which will be the coordinates origin after mapping origin: Origin of the pore which will be the coordinates origin after mapping
sym_axis (opt.): Symmtery axis of the pore, may be a literal direction sym_axis (opt.): Symmtery axis of the pore, may be a literal direction
'x', 'y' or 'z' or an array of shape (3,) 'x', 'y' or 'z' or an array of shape (3,)
@ -465,30 +452,34 @@ def pore_coordinates(coordinates, origin, sym_axis="z"):
rot_axis[["x", "y", "z"].index(sym_axis)] = 1 rot_axis[["x", "y", "z"].index(sym_axis)] = 1
else: else:
rot_axis = sym_axis rot_axis = sym_axis
return rotate_axis(frame - origin, rot_axis)
return rotate_axis(coordinates - origin, rot_axis)
@map_coordinates @map_coordinates
def vectors(coordinates, atoms_a, atoms_b, normed=False): def vectors(
frame: CoordinateFrame,
atoms_indices_a: npt.ArrayLike[int],
atoms_indices_b: npt.ArrayLike[int],
normed: bool = False,
) -> np.ndarray:
""" """
Compute the vectors between the atoms of two subsets. Compute the vectors between the atoms of two subsets.
Args: Args:
coordinates: The Coordinates object the atoms will be taken from frame: The Coordinates object the atoms will be taken from
atoms_a: Mask or indices of the first atom subset atoms_indices_a: Mask or indices of the first atom subset
atoms_b: Mask or indices of the second atom subset atoms_indices_b: Mask or indices of the second atom subset
normed (opt.): If the vectors should be normed normed (opt.): If the vectors should be normed
box (opt.): If not None, the vectors are calcualte with PBC
The defintion of atoms_a/b can be any possible subript of a numpy array. The definition of atoms_a/b can be any possible subript of a numpy array.
They can, for example, be given as a masking array of bool values with the They can, for example, be given as a masking array of bool values with the
same length as the frames of the coordinates. Or they can be a list of same length as the frames of the coordinates.
indices selecting the atoms of these indices from each frame. Or there can be a list of indices selecting the atoms of these indices from each
frame.
It is possible to compute the mean of several atoms before calculating the vectors, It is possible to compute the means of several atoms before calculating the vectors,
by using a two-dimensional list of indices. The following code computes the vectors by using a two-dimensional list of indices. The following code computes the vectors
between atoms 0, 3, 6 and the mean coordinate of atoms 1, 4, 7 and 2, 5, 8:: between atoms 0, 3, 6 and the mean coordinate of atoms 1, 4, 7 and 2, 5, 8:
>>> inds_a = [0, 3, 6] >>> inds_a = [0, 3, 6]
>>> inds_b = [[1, 4, 7], [2, 5, 8]] >>> inds_b = [[1, 4, 7], [2, 5, 8]]
@ -499,11 +490,11 @@ def vectors(coordinates, atoms_a, atoms_b, normed=False):
coords[6] - (coords[7] + coords[8])/2, coords[6] - (coords[7] + coords[8])/2,
]) ])
""" """
box = coordinates.box box = frame.box
coords_a = coordinates[atoms_a] coords_a = frame[atoms_indices_a]
if len(coords_a.shape) > 2: if len(coords_a.shape) > 2:
coords_a = coords_a.mean(axis=0) coords_a = coords_a.mean(axis=0)
coords_b = coordinates[atoms_b] coords_b = frame[atoms_indices_b]
if len(coords_b.shape) > 2: if len(coords_b.shape) > 2:
coords_b = coords_b.mean(axis=0) coords_b = coords_b.mean(axis=0)
vec = pbc_diff(coords_a, coords_b, box=box) vec = pbc_diff(coords_a, coords_b, box=box)
@ -514,10 +505,12 @@ def vectors(coordinates, atoms_a, atoms_b, normed=False):
@map_coordinates @map_coordinates
def dipole_vector(coordinates, atoms, normed=None): def dipole_vector(
coords = coordinates.whole[atoms] frame: CoordinateFrame, atom_indices: npt.ArrayLike[int], normed: bool = None
res_ids = coordinates.residue_ids[atoms] ) -> np.ndarray:
charges = coordinates.charges[atoms] coords = frame.whole[atom_indices]
res_ids = frame.residue_ids[atom_indices]
charges = frame.charges[atom_indices]
mask = np.bincount(res_ids)[1:] != 0 mask = np.bincount(res_ids)[1:] != 0
dipoles = np.array( dipoles = np.array(
[np.bincount(res_ids, weights=c * charges)[1:] for c in coords.T] [np.bincount(res_ids, weights=c * charges)[1:] for c in coords.T]
@ -531,11 +524,11 @@ def dipole_vector(coordinates, atoms, normed=None):
@map_coordinates @map_coordinates
def sum_dipole_vector( def sum_dipole_vector(
coordinates: CoordinateFrame, coordinates: CoordinateFrame,
atoms: list[int], atom_indices: npt.ArrayLike[int],
normed: bool = True, normed: bool = True,
): ) -> np.ndarray:
coords = coordinates.whole[atoms] coords = coordinates.whole[atom_indices]
charges = coordinates.charges[atoms] charges = coordinates.charges[atom_indices]
dipole = np.array([c * charges for c in coords.T]).T dipole = np.array([c * charges for c in coords.T]).T
if normed: if normed:
dipole /= np.linalg.norm(dipole) dipole /= np.linalg.norm(dipole)
@ -544,16 +537,16 @@ def sum_dipole_vector(
@map_coordinates @map_coordinates
def normal_vectors( def normal_vectors(
coordinates: CoordinateFrame, frame: CoordinateFrame,
atoms_a: list[int], atom_indices_a: npt.ArrayLike[int],
atoms_b: list[int], atom_indices_b: npt.ArrayLike[int],
atoms_c: list[int], atom_indices_c: npt.ArrayLike[int],
normed: bool = True, normed: bool = True,
): ) -> np.ndarray:
coords_a = coordinates[atoms_a] coords_a = frame[atom_indices_a]
coords_b = coordinates[atoms_b] coords_b = frame[atom_indices_b]
coords_c = coordinates[atoms_c] coords_c = frame[atom_indices_c]
box = coordinates.box box = frame.box
vectors_a = pbc_diff(coords_a, coords_b, box=box) vectors_a = pbc_diff(coords_a, coords_b, box=box)
vectors_b = pbc_diff(coords_a, coords_c, box=box) vectors_b = pbc_diff(coords_a, coords_c, box=box)
vec = np.cross(vectors_a, vectors_b) vec = np.cross(vectors_a, vectors_b)
@ -576,7 +569,9 @@ def displacements_without_drift(
@map_coordinates @map_coordinates
def cylindrical_coordinates(frame, origin=None): def cylindrical_coordinates(
frame: CoordinateFrame, origin: npt.ArrayLike = None
) -> np.ndarray:
if origin is None: if origin is None:
origin = np.diag(frame.box) / 2 origin = np.diag(frame.box) / 2
x = frame[:, 0] - origin[0] x = frame[:, 0] - origin[0]