|
|
|
|
@@ -18,7 +18,7 @@ def log_indices(first: int, last: int, num: int = 100) -> np.ndarray:
|
|
|
|
|
return np.unique(np.int_(ls) - 1 + first)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@autosave_data(nargs=2, kwargs_keys=('selector', 'segments', 'skip', 'window', 'average', 'points',), version=1.0)
|
|
|
|
|
@autosave_data(2)
|
|
|
|
|
def shifted_correlation(
|
|
|
|
|
function: Callable,
|
|
|
|
|
frames: Coordinates,
|
|
|
|
|
@@ -199,7 +199,7 @@ def msd(
|
|
|
|
|
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def isf_raw(
|
|
|
|
|
def isf(
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
end_frame: CoordinateFrame,
|
|
|
|
|
q: float = 22.7,
|
|
|
|
|
@@ -216,59 +216,29 @@ def isf_raw(
|
|
|
|
|
displacements = displacements_without_drift(start_frame, end_frame, trajectory)
|
|
|
|
|
if axis == "all":
|
|
|
|
|
distance = (displacements**2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.sinc(distance * q / np.pi)
|
|
|
|
|
return np.sinc(distance * q / np.pi).mean()
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
distance = (displacements[:, [0, 1]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q))
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
distance = (displacements[:, [0, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q))
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
distance = (displacements[:, [1, 2]]**2).sum(axis=1) ** 0.5
|
|
|
|
|
return np.real(jn(0, distance * q))
|
|
|
|
|
return np.real(jn(0, distance * q)).mean()
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
distance = np.abs(displacements[:, 0])
|
|
|
|
|
return np.cos(np.abs(q * distance))
|
|
|
|
|
return np.mean(np.cos(np.abs(q * distance)))
|
|
|
|
|
elif axis == "y":
|
|
|
|
|
distance = np.abs(displacements[:, 1])
|
|
|
|
|
return np.cos(np.abs(q * distance))
|
|
|
|
|
return np.mean(np.cos(np.abs(q * distance)))
|
|
|
|
|
elif axis == "z":
|
|
|
|
|
distance = np.abs(displacements[:, 2])
|
|
|
|
|
return np.cos(np.abs(q * distance))
|
|
|
|
|
return np.mean(np.cos(np.abs(q * distance)))
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def isf(
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
end_frame: CoordinateFrame,
|
|
|
|
|
q: float = 22.7,
|
|
|
|
|
trajectory: Coordinates = None,
|
|
|
|
|
axis: str = "all",
|
|
|
|
|
) -> float:
|
|
|
|
|
"""
|
|
|
|
|
Incoherent intermediate scattering function averaged over all particles.
|
|
|
|
|
See isf_raw for details.
|
|
|
|
|
"""
|
|
|
|
|
return isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis).mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def isf_mean_var(
|
|
|
|
|
start_frame: CoordinateFrame,
|
|
|
|
|
end_frame: CoordinateFrame,
|
|
|
|
|
q: float = 22.7,
|
|
|
|
|
trajectory: Coordinates = None,
|
|
|
|
|
axis: str = "all",
|
|
|
|
|
) -> float:
|
|
|
|
|
"""
|
|
|
|
|
Incoherent intermediate scattering function averaged over all particles and the
|
|
|
|
|
variance.
|
|
|
|
|
See isf_raw for details.
|
|
|
|
|
"""
|
|
|
|
|
values = isf_raw(start_frame, end_frame, q=q, trajectory=trajectory, axis=axis)
|
|
|
|
|
return values.mean(), values.var()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotational_autocorrelation(
|
|
|
|
|
start_frame: CoordinateFrame, end_frame: CoordinateFrame, order: int = 2
|
|
|
|
|
) -> float:
|
|
|
|
|
@@ -460,7 +430,6 @@ def non_gaussian_parameter(
|
|
|
|
|
end_frame: CoordinateFrame,
|
|
|
|
|
trajectory: Coordinates = None,
|
|
|
|
|
axis: str = "all",
|
|
|
|
|
full_output = False,
|
|
|
|
|
) -> float:
|
|
|
|
|
r"""
|
|
|
|
|
Calculate the non-Gaussian parameter.
|
|
|
|
|
@@ -473,41 +442,27 @@ def non_gaussian_parameter(
|
|
|
|
|
else:
|
|
|
|
|
vectors = displacements_without_drift(start_frame, end_frame, trajectory)
|
|
|
|
|
if axis == "all":
|
|
|
|
|
r2 = (vectors**2).sum(axis=1)
|
|
|
|
|
r = (vectors**2).sum(axis=1)
|
|
|
|
|
dimensions = 3
|
|
|
|
|
elif axis == "xy" or axis == "yx":
|
|
|
|
|
r2 = (vectors[:, [0, 1]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [0, 1]]**2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "xz" or axis == "zx":
|
|
|
|
|
r2 = (vectors[:, [0, 2]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [0, 2]]**2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "yz" or axis == "zy":
|
|
|
|
|
r2 = (vectors[:, [1, 2]]**2).sum(axis=1)
|
|
|
|
|
r = (vectors[:, [1, 2]]**2).sum(axis=1)
|
|
|
|
|
dimensions = 2
|
|
|
|
|
elif axis == "x":
|
|
|
|
|
r2 = vectors[:, 0] ** 2
|
|
|
|
|
r = vectors[:, 0] ** 2
|
|
|
|
|
dimensions = 1
|
|
|
|
|
elif axis == "y":
|
|
|
|
|
r2 = vectors[:, 1] ** 2
|
|
|
|
|
r = vectors[:, 1] ** 2
|
|
|
|
|
dimensions = 1
|
|
|
|
|
elif axis == "z":
|
|
|
|
|
r2 = vectors[:, 2] ** 2
|
|
|
|
|
r = vectors[:, 2] ** 2
|
|
|
|
|
dimensions = 1
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError('Parameter axis has to be ether "all", "x", "y", or "z"!')
|
|
|
|
|
|
|
|
|
|
m2 = np.mean(r2)
|
|
|
|
|
m4 = np.mean(r2**2)
|
|
|
|
|
if m2 == 0.0:
|
|
|
|
|
if full_output:
|
|
|
|
|
return 0.0, 0.0, 0.0
|
|
|
|
|
else:
|
|
|
|
|
return 0.0
|
|
|
|
|
|
|
|
|
|
alpha_2 = (m4 / ((1 + 2 / dimensions) * m2**2)) - 1
|
|
|
|
|
if full_output:
|
|
|
|
|
return alpha_2, m2, m4
|
|
|
|
|
else:
|
|
|
|
|
return alpha_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (np.mean(r**2) / ((1 + 2 / dimensions) * (np.mean(r) ** 2))) - 1
|
|
|
|
|
|