""" Spatially resolved analysis in a cylindrical pore ======================================================= Calculate the spatially resolved ISF inside a cylindrical neutral water pore In this case the bins describe the shortest distance of an oxygen atom to any wall atom """ import numpy as np import matplotlib.pyplot as plt from src import mdevaluate as md import tudplot from scipy import spatial from scipy.optimize import curve_fit #trajectory with index file #TODO eine allgemeinere stelle? traj = md.open('/data/robin/sim/nvt/12kwater/240_r25_0_NVT', trajectory='nojump.xtc', index_file='indexSL.ndx',topology='*.gro') #Liquid oxygens LO = traj.subset(indices= traj.atoms.indices['LH2O']) #Solid oxygens SO = traj.subset(indices= traj.atoms.indices['SH2O']) #Solid oxygens and bonded hydrogens SW = traj.subset(residue_id = SO.atom_subset.residue_ids) #TODO die folgenden beiden zusammen sind nochmal deutlich schneller als #md.atom.distance_to_atoms, kannst du entweder in irgendeiner weise einbauen #oder hier lassen, man muss aber auf thickness achten, dass das sinn macht #adds periodic layers of the atoms def pbc_points(points, box_vector, thickness=0, index=False, inclusive=True): coordinates = np.copy(points)%box_vector allcoordinates = np.copy(coordinates) indices = np.tile(np.arange(len(points)),(27)) for x in range(-1, 2, 1): for y in range(-1, 2, 1): for z in range(-1, 2, 1): vv = np.array([x, y, z], dtype=float) if not (vv == 0).all() : allcoordinates = np.concatenate((allcoordinates, coordinates + vv*box_vector), axis=0) if thickness != 0: mask = np.all(allcoordinates < box_vector+thickness, axis=1) allcoordinates = allcoordinates[mask] indices = indices[mask] mask = np.all(allcoordinates > -thickness, axis=1) allcoordinates = allcoordinates[mask] indices = indices[mask] if not inclusive: allcoordinates = allcoordinates[len(points):] indices = indices[len(points):] if index: return (allcoordinates, indices) return allcoordinates #fast calculation of shortest distance from one subset to another, uses pbc_points def distance_to_atoms(ref, observed_atoms, box=None, thickness=0.5): if box is not None: start_coords = np.copy(observed_atoms)%box all_frame_coords = pbc_points(ref, box, thickness = thickness) else: start_coords = np.copy(observed_atoms) all_frame_coords = np.copy(ref) tree = spatial.cKDTree(all_frame_coords) first_neighbors = tree.query(start_coords)[0] return first_neighbors #this is used to reduce the number of wall atoms to those relevant, speeds up the rest dist = distance_to_atoms(LO[0], SW[0], np.diag(LO[0].box)) wall_atoms = SW.atom_subset.indices[0] wall_atoms = wall_atoms[dist < 0.35] SW = traj.subset(indices = wall_atoms) from functools import partial func = partial(src.mdevaluate.correlation.isf, q=22.7) #selector function to choose liquid oxygens with a certain distance to wall atoms def selector_func(coords, lindices, windices, dmin, dmax): lcoords = coords[lindices] wcoords = coords[windices] dist = distance_to_atoms(wcoords, lcoords,box=np.diag(coords.box)) #radial distance to pore center to ignore molecules that entered the wall rad = np.sum((lcoords[:,:2]-np.diag(coords.box)[:2]/2)**2,axis=1)**.5 return lindices[(dist >= dmin) & (dist < dmax) & (rad < 2.7)] #calculate the shifted correlation for several bins #bin positions are roughly the average of the limits bins = np.array([0.15,0.2,0.3,0.4,0.5,0.8,1.0,1.4,1.8,2.3]) binpos = (bins[1:]+bins[:-1])/2 S = np.empty(len(bins)-1, dtype='object') for i in range(len(bins)-1): selector = partial(selector_func,lindices=LO.atom_subset.indices[0], windices=SW.atom_subset.indices[0],dmin=bins[i], dmax = bins[i+1]) t, S[i] = src.mdevaluate.correlation.shifted_correlation( func, traj,segments=50, skip=0.1,average=True, correlation=src.mdevaluate.correlation.subensemble_correlation(selector), description=str(bins[i])+','+str(bins[i+1])) taus = np.zeros(len(S)) tudplot.activate() plt.figure() for i,s in enumerate(S): pl = plt.plot(t, s, '.', label='d = ' + str(binpos[i]) + ' nm') #only includes the relevant data for 1/e fitting mask = s < 0.6 fit, cov = curve_fit(src.mdevaluate.functions.kww, t[mask], s[mask], p0=[1.0,t[t>1/np.e][-1],0.5]) taus[i] = src.mdevaluate.functions.kww_1e(*fit) plt.plot(t, src.mdevaluate.functions.kww(t, *fit), c=pl[0].get_color()) plt.xscale('log') plt.legend() #plt.show() tudplot.activate() plt.figure() plt.plot(binpos, taus,'.',label=r'$\tau$(d)') plt.yscale('log') plt.legend() #plt.show()