mdevaluate/mdevaluate/pbc.py
2022-04-20 14:08:38 +02:00

261 lines
8.2 KiB
Python

from collections import OrderedDict
import os
import numpy as np
from scipy.spatial import cKDTree
from itertools import product
from .logging import logger
def pbc_diff_old(v1, v2, box):
"""
Calculate the difference of two vestors, considering optional boundary conditions.
"""
if box is None:
v = v1 - v2
else:
v = v1 % box - v2 % box
v -= (v > box / 2) * box
v += (v < -box / 2) * box
return v
def pbc_diff(v1, v2=None, box=None):
if box is None:
out = v1 - v2
elif len(getattr(box, 'shape', [])) == 1:
out = pbc_diff_rect(v1, v2, box)
elif len(getattr(box, 'shape', [])) == 2:
out = pbc_diff_tric(v1, v2, box)
else: raise NotImplementedError("cannot handle box")
return out
def pbc_diff_rect(v1, v2, box):
"""
Calculate the difference of two vectors, considering periodic boundary conditions.
"""
if v2 is None:
v = v1
else:
v = v1 -v2
s = v / box
v = box * (s - s.round())
return v
def pbc_diff_tric(v1, v2=None, box=None):
"""
difference vector for arbitrary pbc
Args:
box_matrix: CoordinateFrame.box
"""
if len(box.shape) == 1: box = np.diag(box)
if v1.shape == (3,): v1 = v1.reshape((1,3)) #quick 'n dirty
if v2.shape == (3,): v2 = v2.reshape((1,3))
if box is not None:
r3 = np.subtract(v1, v2)
r2 = np.subtract(r3, (np.rint(np.divide(r3[:,2],box[2][2])))[:,np.newaxis] * box[2][np.newaxis,:])
r1 = np.subtract(r2, (np.rint(np.divide(r2[:,1],box[1][1])))[:,np.newaxis] * box[1][np.newaxis,:])
v = np.subtract(r1, (np.rint(np.divide(r1[:,0],box[0][0])))[:,np.newaxis] * box[0][np.newaxis,:])
else:
v = v1 - v2
return v
def pbc_dist(a1,a2,box = None):
return ((pbc_diff(a1,a2,box)**2).sum(axis=1))**0.5
def pbc_extend(c, box):
"""
in: c is frame, box is frame.box
out: all atoms in frame and their perio. image (shape => array(len(c)*27,3))
"""
c=np.asarray(c)
if c.shape == (3,): c = c.reshape((1,3)) #quick 'n dirty
comb = np.array([np.asarray(i) for i in product([0,-1,1],[0,-1,1],[0,-1,1])])
b_matrices = comb[:,:,np.newaxis]*box[np.newaxis,:,:]
b_vectors = b_matrices.sum(axis=1)[np.newaxis,:,:]
return (c[:,np.newaxis,:]+b_vectors)
def pbc_kdtree(v1,box, leafsize = 32, compact_nodes = False, balanced_tree = False):
"""
kd_tree with periodic images
box - whole matrix
rest: optional optimization
"""
r0 = cKDTree(pbc_extend(v1,box).reshape((-1,3)),leafsize ,compact_nodes ,balanced_tree)
return r0
def pbc_kdtree_query(v1,v2,box,n = 1):
"""
kd_tree query with periodic images
"""
r0, r1 = pbc_kdtree(v1,box).query(v2,n)
r1 = r1 // 27
return r0, r1
def pbc_backfold_rect(act_frame,box_matrix):
"""
mimics "trjconv ... -pbc atom -ur rect"
folds coords of act_frame in cuboid
"""
af=np.asarray(act_frame)
if af.shape == (3,): act_frame = act_frame.reshape((1,3)) #quick 'n dirty
b = box_matrix
c = np.diag(b)/2
af = pbc_diff(np.zeros((1,3)),af-c,b)
return af + c
def pbc_backfold_compact(act_frame,box_matrix):
"""
mimics "trjconv ... -pbc atom -ur compact"
folds coords of act_frame in wigner-seitz-cell (e.g. dodecahedron)
"""
c = act_frame
box = box_matrix
ctr = box.sum(0)/2
c=np.asarray(c)
shape = c.shape
if shape == (3,):
c = c.reshape((1,3))
shape = (1,3) #quick 'n dirty
comb = np.array([np.asarray(i) for i in product([0,-1,1],[0,-1,1],[0,-1,1])])
b_matrices = comb[:,:,np.newaxis]*box[np.newaxis,:,:]
b_vectors = b_matrices.sum(axis=1)[np.newaxis,:,:]
sc = c[:,np.newaxis,:]+b_vectors
w = np.argsort((((sc)-ctr)**2).sum(2),1)[:,0]
return sc[range(shape[0]),w]
# Parameter used to switch reference position for whole molecules
# 'com': use center of mass of each molecule
# 'simple': use first atom in each molecule
WHOLEMODE = 'com'
fname = os.path.expanduser('~/.mdevaluate/WHOLEMODE')
if os.path.exists(fname):
with open(fname) as f:
WHOLEMODE = f.read().strip()
logger.info('Setting WHOLEMODE to %s, according to file ~/.mdevaluate/WHOLEMODE', WHOLEMODE)
def whole(frame):
"""
Apply ``-pbc whole`` to a CoordinateFrame.
"""
residue_ids = frame.coordinates.atom_subset.residue_ids
box = frame.box.diagonal()
if WHOLEMODE == 'com':
logger.debug('Using COM as reference for whole.')
coms = np.array([
np.bincount(residue_ids, weights=c * frame.masses)[1:] / np.bincount(residue_ids, weights=frame.masses)[1:]
for c in frame.T
]).T[residue_ids - 1]
else:
# make sure, residue_ids are sorted, then determine indices at which the res id changes
# kind='stable' assures that any existent ordering is preserved
logger.debug('Using first atom as reference for whole.')
sort_ind = residue_ids.argsort(kind='stable')
i = np.concatenate([[0], np.where(np.diff(residue_ids[sort_ind]) > 0)[0] + 1])
coms = frame[sort_ind[i]][residue_ids - 1]
cor = np.zeros_like(frame)
cd = frame - coms
n, d = np.where(cd > box / 2 * 0.9)
cor[n, d] = -box[d]
n, d = np.where(cd < -box / 2 * 0.9)
cor[n, d] = box[d]
# this fix is only necessary when COM is the reference
if WHOLEMODE == 'com':
duomask = np.bincount(residue_ids)[1:][residue_ids - 1] == 2
if np.any(duomask):
duomask[::2] = False
cor[duomask] = 0
return frame + cor
NOJUMP_CACHESIZE = 128
def nojump(frame, usecache=True):
"""
Return the nojump coordinates of a frame, based on a jump matrix.
"""
selection = frame.selection
reader = frame.coordinates.frames
if usecache:
if not hasattr(reader, '_nojump_cache'):
reader._nojump_cache = OrderedDict()
# make sure to use absolute (non negative) index
abstep = frame.step % len(frame.coordinates)
i0s = [x for x in reader._nojump_cache if x <= abstep]
if len(i0s) > 0:
i0 = max(i0s)
delta = reader._nojump_cache[i0]
i0 += 1
else:
i0 = 0
delta = 0
delta = delta + np.array(np.vstack(
[m[i0:abstep + 1].sum(axis=0) for m in reader.nojump_matrixes]
).T) * frame.box.diagonal()
reader._nojump_cache[abstep] = delta
while len(reader._nojump_cache) > NOJUMP_CACHESIZE:
reader._nojump_cache.popitem(last=False)
delta = delta[selection, :]
else:
delta = np.array(np.vstack(
[m[:frame.step + 1, selection].sum(axis=0) for m in reader.nojump_matrixes]
).T) * frame.box.diagonal()
return frame - delta
def pbc_points(coordinates, box, thickness=0, index=False, inclusive=True, center=None):
"""
Returns the points their first periodic images. Does not fold them back into the box.
Thickness 0 means all 27 boxes. Positive means the box+thickness. Negative values mean that less than the box is returned.
index=True also returns the indices with indices of images being their originals values.
inclusive=False returns only images, does not work with thickness <= 0
"""
if center is None:
center = box/2
allcoordinates = np.copy(coordinates)
indices = np.tile(np.arange(len(coordinates)),(27))
for x in range(-1, 2, 1):
for y in range(-1, 2, 1):
for z in range(-1, 2, 1):
vv = np.array([x, y, z], dtype=float)
if not (vv == 0).all() :
allcoordinates = np.concatenate((allcoordinates, coordinates + vv*box), axis=0)
if thickness != 0:
mask = np.all(allcoordinates < center+box/2+thickness, axis=1)
allcoordinates = allcoordinates[mask]
indices = indices[mask]
mask = np.all(allcoordinates > center-box/2-thickness, axis=1)
allcoordinates = allcoordinates[mask]
indices = indices[mask]
if not inclusive and thickness > 0:
allcoordinates = allcoordinates[len(coordinates):]
indices = indices[len(coordinates):]
if index:
return (allcoordinates, indices)
return allcoordinates