However, summation over :math:`\theta`, :math:`\phi`, and calculating :math:`f(\theta, \phi, t)` for each orientation is time consuming.
Alternatively, if the orientations are equidistant in :math:`\cos\theta`, one can get to the spectrum directly by creating a histogram of :math:`\omega_\text{int}(\theta, \phi)`, thus circumventing a lot of calculations.
De-Paked spectra
----------------
A superposition of different Pake spectra complicates the evaluation of relaxation times or similar.
The idea is to deconvolute these broad spectra into one line corresponding to relative orientation :math:`\theta = 0`[mccabe97]_.
For :math:`\omega_\text{int}(\theta) \propto (3\cos^2\theta -1)/2 = P_2(\cos\theta)`, the property :math:`\omega_\text{int}(\theta) = \omega_\text{int}(0) \omega_\text{int}(\theta)` is used to write
with :math:`1+i` for :math:`\omega > 0` and :math:`1-i` for :math:`\omega > 0`.
..figure:: depake.png
:scale:50 %
..[mccabe97] M.A. McCabe, S.R. Wassail: Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation, Solid State Nuclear Magnetic Resonance (1997). https://doi.org/10.1016/S0926-2040(97)00024-6