68 lines
1.9 KiB
Python
68 lines
1.9 KiB
Python
|
"""
|
||
|
=======================
|
||
|
Spin-lattice relaxation
|
||
|
=======================
|
||
|
|
||
|
Example for
|
||
|
"""
|
||
|
import numpy as np
|
||
|
from matplotlib import pyplot as plt
|
||
|
|
||
|
from nmreval.distributions import ColeDavidson
|
||
|
from nmreval.nmr import Relaxation, RelaxationEvaluation
|
||
|
from nmreval.nmr.coupling import Quadrupolar
|
||
|
from nmreval.utils.constants import kB
|
||
|
|
||
|
# Define temperature range
|
||
|
inv_temp = np.linspace(3, 9, num=30)
|
||
|
temperature = 1000/inv_temp
|
||
|
|
||
|
# spectral density parameter
|
||
|
ea = 0.45
|
||
|
tau = 1e-21 * np.exp(ea / kB / temperature)
|
||
|
gamma_cd = 0.1
|
||
|
|
||
|
# interaction parameter
|
||
|
omega = 2*np.pi*46e6
|
||
|
delta = 120e3
|
||
|
eta = 0
|
||
|
|
||
|
r = Relaxation()
|
||
|
r.set_distribution(ColeDavidson) # the only parameter that has to be set beforehand
|
||
|
|
||
|
t1_values = r.t1(omega, tau, gamma_cd, mode='bpp',
|
||
|
prefactor=Quadrupolar.relax(delta, eta))
|
||
|
# add noise
|
||
|
rng = np.random.default_rng(123456789)
|
||
|
noisy = (rng.random(t1_values.size)-0.5) * 0.5 * t1_values + t1_values
|
||
|
|
||
|
# set parameter and data
|
||
|
r_eval = RelaxationEvaluation()
|
||
|
r_eval.set_distribution(ColeDavidson)
|
||
|
r_eval.set_coupling(Quadrupolar, (delta, eta))
|
||
|
r_eval.data(temperature, noisy)
|
||
|
r_eval.omega = omega
|
||
|
|
||
|
t1_min_data, _ = r_eval.calculate_t1_min() # second argument is None
|
||
|
t1_min_inter, line = r_eval.calculate_t1_min(interpolate=1, trange=(160, 195), use_log=True)
|
||
|
|
||
|
fig, ax = plt.subplots()
|
||
|
ax.semilogy(1000/t1_min_data[0], t1_min_data[1], 'rx', label='Data minimum')
|
||
|
ax.semilogy(1000/t1_min_inter[0], t1_min_inter[1], 'r+', label='Parabola')
|
||
|
ax.semilogy(1000/line[0], line[1])
|
||
|
|
||
|
found_gamma, found_height = r_eval.get_increase(t1_min_inter[1], idx=0, mode='distribution')
|
||
|
print(found_gamma)
|
||
|
|
||
|
plt.axhline(found_height)
|
||
|
plt.show()
|
||
|
|
||
|
#%%
|
||
|
# Now we found temperature and height of the minimum we can calculate the correlation time
|
||
|
|
||
|
plt.semilogy(1000/temperature, tau)
|
||
|
tau_from_t1, opts = r_eval.correlation_from_t1()
|
||
|
print(opts)
|
||
|
plt.semilogy(1000/tau_from_t1[:, 0], tau_from_t1[:, 1], 'o')
|
||
|
plt.show()
|