C function for energy distribution spectral density
This commit is contained in:
@ -1,13 +1,18 @@
|
||||
import ctypes
|
||||
from itertools import product
|
||||
|
||||
import numpy as np
|
||||
from scipy import LowLevelCallable
|
||||
from scipy.integrate import quad, simps as simpson
|
||||
|
||||
from .base import Distribution
|
||||
from ..lib.utils import ArrayLike
|
||||
from ..utils.constants import kB
|
||||
|
||||
from .helper import HAS_C_FUNCS, lib
|
||||
|
||||
|
||||
# noinspection PyMethodOverriding
|
||||
class EnergyBarriers(Distribution):
|
||||
name = 'Energy barriers'
|
||||
parameter = [r'\tau_{0}', r'E_{m}', r'\Delta E']
|
||||
@ -51,7 +56,7 @@ class EnergyBarriers(Distribution):
|
||||
omega = np.atleast_1d(omega)
|
||||
temperature = np.atleast_1d(temperature)
|
||||
|
||||
e_axis = np.linspace(max(0, e_m-50*e_b), e_m+50*e_b, num=5001)
|
||||
e_axis = np.linspace(max(0., e_m-50*e_b), e_m+50*e_b, num=5001)
|
||||
ret_val = []
|
||||
for o, tt in product(omega, temperature):
|
||||
ret_val.append(simpson(_integrand_freq_real(e_axis, o, tau0, e_m, e_b, tt), e_axis) -
|
||||
@ -60,23 +65,41 @@ class EnergyBarriers(Distribution):
|
||||
return np.array(ret_val)
|
||||
|
||||
@staticmethod
|
||||
def specdens(omega, temperature, *args):
|
||||
def specdens(omega, temperature, tau0: float, e_m: float, e_b: float):
|
||||
# in contrast to other spectral densities, it's omega and temperature
|
||||
tau0, e_m, e_b = args
|
||||
|
||||
def integrand(e_a, w, t0, mu, sigma, t):
|
||||
r = EnergyBarriers.rate(t0, e_a, t)
|
||||
return r/(r**2 + w**2) * EnergyBarriers.energydistribution(e_a, mu, sigma)
|
||||
|
||||
omega = np.atleast_1d(omega)
|
||||
temperature = np.atleast_1d(temperature)
|
||||
|
||||
e_axis = np.linspace(max(0, e_m-50*e_b), e_m+50*e_b, num=5001)
|
||||
if HAS_C_FUNCS:
|
||||
ret_val = EnergyBarriers.spec_dens_c(omega, temperature, tau0, e_m, e_b)
|
||||
else:
|
||||
ret_val = EnergyBarriers.spec_dens_py(omega, temperature, tau0, e_m, e_b)
|
||||
|
||||
ret_val = np.array([simpson(integrand(e_axis, o, tau0, e_m, e_b, tt), e_axis)
|
||||
for o in omega for tt in temperature])
|
||||
return ret_val.squeeze()
|
||||
|
||||
return ret_val
|
||||
@staticmethod
|
||||
def spec_dens_c(omega: np.ndarray, temperature: np.ndarray, tau0: float, e_m: float, e_b: float) -> np.ndarray:
|
||||
res = []
|
||||
for o, t in product(omega, temperature):
|
||||
c = (ctypes.c_double * 5)(o, tau0, e_m, e_b, t)
|
||||
user_data = ctypes.cast(ctypes.pointer(c), ctypes.c_void_p)
|
||||
area = quad(LowLevelCallable(lib.energyDist_SD, user_data), 0, np.infty, epsabs=1e-10)[0]
|
||||
res.append(area)
|
||||
|
||||
return np.array(res)
|
||||
|
||||
@staticmethod
|
||||
def spec_dens_py(omega: np.ndarray, temperature: np.ndarray, tau0: float, e_m: float, e_b: float) -> np.ndarray:
|
||||
def integrand(e_a, w, t0, mu, sigma, t):
|
||||
r = EnergyBarriers.rate(t0, e_a, t)
|
||||
return r/(r**2 + w**2) * EnergyBarriers.energydistribution(e_a, mu, sigma)
|
||||
|
||||
e_axis = np.linspace(max(0., e_m-50*e_b), e_m+50*e_b, num=5001)
|
||||
|
||||
ret_val = [simpson(integrand(e_axis, o, tau0, e_m, e_b, tt), e_axis) for o in omega for tt in temperature]
|
||||
|
||||
return np.array(ret_val)
|
||||
|
||||
@staticmethod
|
||||
def mean(*args):
|
||||
|
Reference in New Issue
Block a user