237 lines
7.0 KiB
Python
237 lines
7.0 KiB
Python
"""
|
|
NMR coupling values
|
|
===================
|
|
|
|
This is a compilation of NMR prefactors for calculation of relaxation times.
|
|
A note of caution is
|
|
|
|
"""
|
|
|
|
import abc
|
|
from math import log
|
|
from collections import OrderedDict
|
|
|
|
from ..utils.constants import gamma_full, hbar_joule, pi, gamma, mu0
|
|
|
|
|
|
__all__ = ['Quadrupolar', 'Czjzek', 'HeteroDipolar',
|
|
'HomoDipolar', 'Constant', 'CSA']
|
|
|
|
|
|
class Coupling(metaclass=abc.ABCMeta):
|
|
name = 'coupling'
|
|
parameter = None
|
|
choice = None
|
|
unit = None
|
|
equation = ''
|
|
|
|
@staticmethod
|
|
@abc.abstractmethod
|
|
def relax(*args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
|
|
class Quadrupolar(Coupling):
|
|
""" Quadrupolar interaction
|
|
"""
|
|
|
|
name = 'Quadrupolar'
|
|
parameter = [r'\delta/C_{q}', r'\eta']
|
|
unit = ['Hz', '']
|
|
equation = r'3/50 \pi^{2} C_{q}^{2} (1+\eta^{2}/3) (2I+3)/(I^{2}(2I-1))'
|
|
choice = [
|
|
('Spin', 'spin', OrderedDict([('1', 1), ('3/2', 1.5), ('2', 2), ('5/2', 2.5)])),
|
|
('Type', 'is_delta', {'Anisotropy': True, 'QCC': False})
|
|
]
|
|
|
|
@staticmethod
|
|
def relax(value: float, eta: float, spin: float = 1, is_delta: bool = True) -> float:
|
|
r"""Calculates prefactor for quadrupolar relaxation
|
|
|
|
.. math::
|
|
\frac{3}{200} (2\pi C_q)^2 \left(1+\frac{\eta^{2}}{3}\right) \frac{2I+3}{I^{2}(2I-1)}
|
|
|
|
If input is given as anisotropy :math:`\delta` then :math:`C_q` is calculated via
|
|
|
|
.. math::
|
|
C_q = \delta \frac{4I(2I-1)}{3(2m-1)}
|
|
|
|
where `m` is 1 for integer spin and 3/2 else.
|
|
|
|
Args:
|
|
value (float): Quadrupolar coupling constant in Hz.
|
|
eta (float): Asymmetry parameter
|
|
spin (float): Spin `I`. Default is 1.
|
|
is_delta (bool): If True, uses value as anisotropy :math:`\delta` else as QCC. Default is True.
|
|
|
|
"""
|
|
m = 1 if (2*spin) % 2 == 0 else 1.5
|
|
if is_delta:
|
|
value *= 4*spin*(2*spin-1) / (3*(2*m-1))
|
|
|
|
return 0.06 * (2*spin+3) * (pi*value)**2 * (1 + eta**2 / 3) / (spin**2 * (2*spin-1))
|
|
|
|
@staticmethod
|
|
def convert(in_value: float, to: str = 'aniso', spin: float = 1) -> float:
|
|
r"""Convert between QCC and anisotropy.
|
|
|
|
Relation between quadrupole coupling constant :math:`C_q` and anisotropy :math:`\delta` is given by
|
|
|
|
.. math::
|
|
\delta = \frac{3(2m-1)}{4I(2I-1)} C_q
|
|
|
|
where `m` is 1 for integer spin and 3/2 else.
|
|
|
|
Args:
|
|
in_value (float): Input value
|
|
to (str, {`aniso`, `qcc`}): Direction of conversion. Default is `aniso`
|
|
spin (float): Spin number `I`. Default is 1.
|
|
|
|
Returns:
|
|
Converted value
|
|
"""
|
|
if to not in ['aniso', 'qcc']:
|
|
raise ValueError(f'Cannot convert to {to} use `aniso` or `qcc`')
|
|
|
|
m = 1 if (2 * spin) % 2 == 0 else 1.5
|
|
fac = 4 * spin * (2 * spin - 1) / (3 * (2 * m - 1))
|
|
if to == 'delta':
|
|
return in_value * fac
|
|
else:
|
|
return in_value / fac
|
|
|
|
|
|
class HomoDipolar(Coupling):
|
|
"""Homonuclear dipolar coupling"""
|
|
|
|
name = 'Homonuclear Dipolar'
|
|
parameter = ['r']
|
|
unit = ['m']
|
|
choice = [
|
|
(r'\gamma', 'nucleus', {k: k for k in gamma}),
|
|
('Spin', 'spin', OrderedDict([('1/2', 0.5), ('1', 1), ('3/2', 1.5), ('2', 2), ('5/2', 2.5), ('3', 3)])),
|
|
]
|
|
equation = r'2/5 [\mu_{0}/(4\pi) \hbar \gamma^{2}/r^{3}]^{2} I(I+1)'
|
|
|
|
@staticmethod
|
|
def relax(r: float, nucleus: str = '1H', spin: float = 0.5) -> float:
|
|
"""Calculate prefactor for homonuclear dipolar relaxation.
|
|
|
|
Args:
|
|
r (float): Distance in m.
|
|
nucleus (str): Name of isotope. Default is `1H`
|
|
spin (float): Spin `I` of isotope. Default is 1/2
|
|
|
|
"""
|
|
|
|
if nucleus not in gamma_full:
|
|
raise KeyError(f'Unknown nucleus {nucleus}')
|
|
|
|
try:
|
|
coupling = mu0 / (4*pi) * hbar_joule * gamma_full[nucleus]**2 / (r+1e-34)**3
|
|
except ZeroDivisionError:
|
|
return 1e318
|
|
|
|
coupling **= 2
|
|
coupling *= 2 * spin * (spin+1) / 5
|
|
|
|
return coupling
|
|
|
|
|
|
class HeteroDipolar(Coupling):
|
|
"""Heteronuclear dipolar coupling"""
|
|
|
|
name = 'Heteronuclear Dipolar'
|
|
parameter = ['r']
|
|
unit = ['m']
|
|
choice = [
|
|
(r'\gamma_{1}', 'nucleus1', {k: k for k in gamma}),
|
|
(r'\gamma_{2}', 'nucleus2', {k: k for k in gamma}),
|
|
('Spin', 'spin', dict([('1/2', 0.5), ('1', 1), ('3/2', 1.5), ('2', 2), ('5/2', 2.5), ('3', 3)]))
|
|
]
|
|
equation = r'2/15 [\mu_{0}/(4\pi) \hbar \gamma^{2}/r^{3}]^{2} I(I+1)'
|
|
|
|
@staticmethod
|
|
def relax(r: float, nucleus1: str = '1H', nucleus2: str = '19F', spin: float = 0.5) -> float:
|
|
r"""Calculate prefactor for feteronuclear dipolar relaxation.
|
|
|
|
.. math::
|
|
\frac{2}{15} \left(\frac{\mu_0}{4\pi} \hbar \frac{\gamma_1 \gamma_2}{r^3} \right)^2 S(S+1)
|
|
|
|
Args:
|
|
r (float): Distance in m.
|
|
nucleus1 (str): Name of observed isotope. Default is `1H`
|
|
nucleus2 (str): Name of coupled isotope. Default is `19F`
|
|
spin (float): Spin `S` of the coupled isotope. Default is 1/2
|
|
|
|
"""
|
|
if nucleus1 not in gamma_full:
|
|
raise KeyError(f'Unknown nucleus {nucleus1}')
|
|
|
|
if nucleus2 not in gamma_full:
|
|
raise KeyError(f'Unknown nucleus {nucleus2}')
|
|
|
|
try:
|
|
coupling = mu0 / (4*pi) * hbar_joule * gamma_full[nucleus1]*gamma_full[nucleus2] / r**3
|
|
except ZeroDivisionError:
|
|
return 1e318
|
|
|
|
coupling **= 2
|
|
coupling *= 2 * spin * (spin+1) / 15
|
|
|
|
return coupling
|
|
|
|
|
|
class Czjzek(Coupling):
|
|
name = 'Czjzek'
|
|
parameter = [r'\Sigma']
|
|
unit = ['Hz']
|
|
choice = [('Spin', 'spin', {'1': 1, '3/2': 1.5, '5/2': 2.5, '7/2': 3.5})]
|
|
equation = r'3/[20log(2)] \pi^{2} \Sigma^{2} (2I+3)/(I^{2}(2I-1))'
|
|
|
|
@staticmethod
|
|
def relax(fwhm, spin=1):
|
|
return 3*(2+spin+3) * pi**2 * fwhm**2 / 20 / log(2) / spin**2 / (2*spin-1)
|
|
|
|
|
|
class Constant(Coupling):
|
|
name = 'Constant'
|
|
parameter = ['C']
|
|
equation = 'C'
|
|
|
|
@staticmethod
|
|
def relax(c):
|
|
return c
|
|
|
|
|
|
class CSA(Coupling):
|
|
"""Chemical shift anisotropy"""
|
|
|
|
name = 'CSA'
|
|
equation = r'2/15 \Delta\sigma^{2} (1+\eta^{2}/2)'
|
|
parameter = [r'\Delta\sigma', '\eta']
|
|
unit = ['ppm', '']
|
|
|
|
@staticmethod
|
|
def relax(sigma: float, eta: float) -> float:
|
|
r"""Relaxation prefactor for chemical shift anisotropy.
|
|
|
|
.. math::
|
|
C = \frac{2}{15} \Delta\sigma^2 \left(1+\frac{\eta^2}{3}\right)
|
|
|
|
.. note::
|
|
The influence of the external magnetic field is missing here but
|
|
is multiplied in :func:`~nmreval.nmr.Relaxation.t1_csa`
|
|
|
|
Args:
|
|
sigma: Anisotropy (in ppm)
|
|
eta: Asymmetry parameter
|
|
|
|
Reference:
|
|
Spiess, H.W.: Rotation of Molecules and Nuclear Spin Relaxation.
|
|
In: NMR - Basic principles and progress, Vol. 15, (Springer, 1978)
|
|
https://doi.org/10.1007/978-3-642-66961-3_2
|
|
|
|
"""
|
|
return 2 * sigma**2 * (1+eta**2 / 3) / 15
|