nmreval/nmreval/distributions/havriliaknegami.py
2022-03-08 10:27:40 +01:00

107 lines
3.2 KiB
Python

import numpy as np
from scipy.special import psi
from .base import Distribution
from ..math.mittagleffler import mlf
from ..utils import Eu
class HavriliakNegami(Distribution):
"""
Functions based on Cole-Davidson distribution
"""
name = 'Havriliak-Negami'
parameter = [r'\alpha', r'\gamma']
bounds = [(0, 1), (0, 1)]
@staticmethod
def correlation(t, tau0, alpha, gamma):
r"""
Correlation function
.. math::
C(t, \tau_0, \alpha, \gamma) = 1 - \left(\frac{t}{\tau_0}\right)^{\alpha\gamma} \text{E}_{\alpha,\alpha\gamma+1}^\gamma\left[-\left(\frac{t}{\tau_0}\right)^\alpha\right]
with incomplete Gamma function
.. math::
\Gamma(\gamma, t/\tau_0) = \frac{1}{\Gamma(\gamma)}\int_{t/\tau_0}^\infty x^{\gamma-1}\text{e}^{-x}\,\mathrm{d}x
Args:
t:
tau0:
alpha:
gamma:
References:
R. Hilfer: H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys. Rev. E (2002) https://doi.org/10.1103/PhysRevE.65.061510
"""
return 1 - (t/tau0)**(alpha*gamma) * mlf(-(t/tau0)**alpha, alpha, alpha*gamma+1, gamma)
@staticmethod
def susceptibility(omega, tau, alpha, gamma):
return np.conjugate(1/(1 + (1j*omega[:, None]*tau[None, :])**alpha)**gamma).squeeze()
@staticmethod
def specdens(omega, tau, alpha, gamma):
omtau = (omega[:, None]*tau[None, :])**alpha
zaehler = np.sin(gamma * np.arctan2(omtau*np.sin(0.5*alpha*np.pi), 1 + omtau*np.cos(0.5*alpha*np.pi)))
nenner = (1 + 2*omtau * np.cos(0.5*alpha*np.pi) + omtau**2)**(0.5*gamma)
return ((1 / omega) * (zaehler/nenner)).squeeze()
@staticmethod
def distribution(tau, tau0, alpha, gamma):
if alpha == 1:
from .coledavidson import ColeDavidson
return ColeDavidson.distribution(tau, tau0, gamma)
elif gamma == 1:
from .colecole import ColeCole
return ColeCole.distribution(tau, tau0, alpha)
else:
_y = tau/tau0
om_y = (1 + 2*np.cos(np.pi*alpha)*(_y**alpha) + _y**(2*alpha))**(-gamma/2)
theta_y = np.arctan2(np.sin(np.pi * alpha), _y**alpha + np.cos(np.pi*alpha))
return np.sin(gamma*theta_y) * om_y * (_y**(alpha*gamma)) / np.pi
@staticmethod
def max(tau, alpha, gamma):
return tau*(np.sin(0.5*np.pi*alpha*gamma/(gamma+1)) / np.sin(0.5*np.pi*alpha/(gamma+1)))**(1/alpha)
@staticmethod
def logmean(tau, alpha, gamma):
r"""
Calculate mean logarithm of tau
.. math::
\langle \ln \tau \rangle = \ln \tau + \frac{\Psi(\gamma) + \text{Eu}}{\alpha}
Args:
tau:
alpha:
gamma:
Returns:
"""
return np.log(tau) + (psi(gamma)+Eu)/alpha
@staticmethod
def mean(tau, alpha, gamma):
# approximation according to Th. Bauer et al., J. Chem. Phys. 133, 144509 (2010).
return tau * alpha*gamma
if __name__ == '__main__':
import matplotlib.pyplot as plt
x = np.logspace(-7, 3)
y = HavriliakNegami.correlation(x, 1, 0.8, 0.26)
plt.semilogx(x, y)
plt.show()