107 lines
3.2 KiB
Python
107 lines
3.2 KiB
Python
import numpy as np
|
|
from scipy.special import psi
|
|
|
|
from .base import Distribution
|
|
from ..math.mittagleffler import mlf
|
|
from ..utils import Eu
|
|
|
|
|
|
class HavriliakNegami(Distribution):
|
|
"""
|
|
Functions based on Cole-Davidson distribution
|
|
"""
|
|
|
|
name = 'Havriliak-Negami'
|
|
parameter = [r'\alpha', r'\gamma']
|
|
bounds = [(0, 1), (0, 1)]
|
|
|
|
@staticmethod
|
|
def correlation(t, tau0, alpha, gamma):
|
|
r"""
|
|
Correlation function
|
|
|
|
.. math::
|
|
C(t, \tau_0, \alpha, \gamma) = 1 - \left(\frac{t}{\tau_0}\right)^{\alpha\gamma} \text{E}_{\alpha,\alpha\gamma+1}^\gamma\left[-\left(\frac{t}{\tau_0}\right)^\alpha\right]
|
|
|
|
with incomplete Gamma function
|
|
|
|
.. math::
|
|
\Gamma(\gamma, t/\tau_0) = \frac{1}{\Gamma(\gamma)}\int_{t/\tau_0}^\infty x^{\gamma-1}\text{e}^{-x}\,\mathrm{d}x
|
|
|
|
Args:
|
|
t:
|
|
tau0:
|
|
alpha:
|
|
gamma:
|
|
|
|
References:
|
|
R. Hilfer: H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys. Rev. E (2002) https://doi.org/10.1103/PhysRevE.65.061510
|
|
|
|
"""
|
|
return 1 - (t/tau0)**(alpha*gamma) * mlf(-(t/tau0)**alpha, alpha, alpha*gamma+1, gamma)
|
|
|
|
@staticmethod
|
|
def susceptibility(omega, tau, alpha, gamma):
|
|
return np.conjugate(1/(1 + (1j*omega[:, None]*tau[None, :])**alpha)**gamma).squeeze()
|
|
|
|
@staticmethod
|
|
def specdens(omega, tau, alpha, gamma):
|
|
omtau = (omega[:, None]*tau[None, :])**alpha
|
|
|
|
zaehler = np.sin(gamma * np.arctan2(omtau*np.sin(0.5*alpha*np.pi), 1 + omtau*np.cos(0.5*alpha*np.pi)))
|
|
nenner = (1 + 2*omtau * np.cos(0.5*alpha*np.pi) + omtau**2)**(0.5*gamma)
|
|
|
|
return ((1 / omega) * (zaehler/nenner)).squeeze()
|
|
|
|
@staticmethod
|
|
def distribution(tau, tau0, alpha, gamma):
|
|
if alpha == 1:
|
|
from .coledavidson import ColeDavidson
|
|
return ColeDavidson.distribution(tau, tau0, gamma)
|
|
elif gamma == 1:
|
|
from .colecole import ColeCole
|
|
return ColeCole.distribution(tau, tau0, alpha)
|
|
else:
|
|
_y = tau/tau0
|
|
om_y = (1 + 2*np.cos(np.pi*alpha)*(_y**alpha) + _y**(2*alpha))**(-gamma/2)
|
|
theta_y = np.arctan2(np.sin(np.pi * alpha), _y**alpha + np.cos(np.pi*alpha))
|
|
|
|
return np.sin(gamma*theta_y) * om_y * (_y**(alpha*gamma)) / np.pi
|
|
|
|
@staticmethod
|
|
def max(tau, alpha, gamma):
|
|
return tau*(np.sin(0.5*np.pi*alpha*gamma/(gamma+1)) / np.sin(0.5*np.pi*alpha/(gamma+1)))**(1/alpha)
|
|
|
|
@staticmethod
|
|
def logmean(tau, alpha, gamma):
|
|
r"""
|
|
Calculate mean logarithm of tau
|
|
|
|
.. math::
|
|
\langle \ln \tau \rangle = \ln \tau + \frac{\Psi(\gamma) + \text{Eu}}{\alpha}
|
|
|
|
Args:
|
|
tau:
|
|
alpha:
|
|
gamma:
|
|
|
|
Returns:
|
|
|
|
"""
|
|
return np.log(tau) + (psi(gamma)+Eu)/alpha
|
|
|
|
@staticmethod
|
|
def mean(tau, alpha, gamma):
|
|
# approximation according to Th. Bauer et al., J. Chem. Phys. 133, 144509 (2010).
|
|
return tau * alpha*gamma
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import matplotlib.pyplot as plt
|
|
|
|
x = np.logspace(-7, 3)
|
|
y = HavriliakNegami.correlation(x, 1, 0.8, 0.26)
|
|
|
|
plt.semilogx(x, y)
|
|
plt.show()
|