python-damaris/src/data/autophase.py
2014-06-26 11:10:51 +00:00

64 lines
2.0 KiB
Python

from scipy.optimize import fmin_powell, bisect, ridder, brentq
import numpy as N
def calculate_entropy(phi, real, imag, gamma, dwell):
"""
Calculates the entropy of the spectrum (real part).
p = phase
gamma should be adjusted such that the penalty and entropy are in the same magnitude
"""
# This is first order phasecorrection
# corr_phase = phi[0]+phi[1]*arange(0,len(signal),1.0)/len(signal) # For 0th and 1st correction
# Zero order phase correction
real_part = real*N.cos(phi)-imag*N.sin(phi)
# Either this for calculating derivatives:
# Zwei-Punkt-Formel
# real_diff = (Re[1:]-Re[:-1])/dwell
# Better this:
# Drei-Punkte-Mittelpunkt-Formel (Ränder werden nicht beachtet)
# real_diff = abs((Re[2:]-Re[:-2])/(dwell*2))
# Even better:
# Fünf-Punkte-Mittelpunkt-Formel (ohne Ränder)
real_diff = N.abs((real_part[:-4]-8*real_part[1:-3]
+8*real_part[3:-1]-2*real_part[4:])/(12*dwell))
# TODO Ränder, sind wahrscheinlich nicht kritisch
# Calculate the entropy
h = real_diff/real_diff.sum()
# Set all h with 0 to 1 (log would complain)
h[h==0]=1
entropy = N.sum(-h*N.log(h))
# My version, according the paper
#penalty = gamma*sum([val**2 for val in Re if val < 0])
# calculate penalty value: a real spectrum should have positive values
if real_part.sum() < 0:
tmp = real_part[real_part<0]
penalty = N.dot(tmp,tmp)
if gamma == 0:
gamma = entropy/penalty
penalty = N.dot(tmp,tmp)*gamma
else:
penalty = 0
#print "Entropy:",entrop,"Penalty:",penalty # Debugging
shannon = entropy+penalty
return shannon
def get_phase(result_object):
global gamma
gamma=0
real = result_object.y[0].copy()
imag = result_object.y[1].copy()
dwell = 1.0/result_object.sampling_rate
# fmin also possible
xopt = fmin_powell( func=calculate_entropy,
x0=N.array([0.0]),
args=(real, imag, gamma, dwell),
disp=0)
result_object.y[0] = real*N.cos(xopt) - imag*N.sin(xopt)
result_object.y[1] = real*N.sin(xopt) + imag*N.cos(xopt)
return result_object