cpp/python/spectrum.py

71 lines
1.9 KiB
Python
Raw Normal View History

2024-11-28 11:07:44 +01:00
import numpy
import numpy as np
from matplotlib import pyplot
# parameter for spectrum simulations
lb = 2e3
pulse_length = 2e-6
def dampening(x: np.ndarray, apod: float) -> np.ndarray:
"""
Calculate additional dampening to account e.g. for field inhomogeneities.
:param x: Time axis in seconds
:param apod: Dampening factor in 1/seconds
:return: Exponential dampening
"""
return np.exp(-apod * x)
def pulse_attn(freq: np.ndarray, t_pulse: float) -> np.ndarray:
"""
Calculate attenuation of signal to account for finite pulse lengths.
See Schmitt-Rohr/Spieß, eq. 2.126 for more information.
:param freq: Frequency axis in Hz
:param t_pulse: Assumed pulse length in s
:return: Attenuation factor.
"""
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
pi_half_squared = np.pi**2 / 4
omega = 2 * np.pi * freq
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
return np.pi * numerator / denominator / 2
def post_process_spectrum(taus, apod, tpulse):
reduction_factor = np.zeros((taus.size, 5)) # hard-coded t_echo :(
for i, tau in enumerate(taus):
try:
raw_data = np.loadtxt(f'fid_tau={tau:.6e}.dat')
except OSError:
continue
t = raw_data[:, 0]
timesignal = raw_data[:, 1:]
timesignal *= dampening(t, apod)[:, None]
timesignal[0, :] /= 2
# FT to spectrum
freq = np.fft.fftshift(np.fft.fftfreq(t.size, d=1e-6))
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec *= pulse_attn(freq, t_pulse=tpulse)[:, None]
reduction_factor[i, :] = 2*timesignal[0, :]
plt.plot(freq, spec)
plt.show()
plt.semilogx(taus, reduction_factor, '.')
plt.show()