added flexibility

This commit is contained in:
Dominik Demuth
2024-11-28 11:07:44 +01:00
parent 4b8922ab55
commit 1c8befac3f
40 changed files with 629 additions and 476 deletions

35
src/CMakeLists.txt Normal file
View File

@ -0,0 +1,35 @@
cmake_minimum_required(VERSION 3.18)
set(CMAKE_CXX_STANDARD 17)
add_executable(rwsim main.cpp
utils/functions.h
utils/functions.cpp
utils/io.cpp
utils/io.h
motions/base.cpp
motions/base.h
motions/random.cpp
motions/random.h
times/base.cpp
times/base.h
times/delta.cpp
times/delta.h
simulation/sims.cpp
simulation/sims.h
utils/ranges.cpp
utils/ranges.h
motions/tetrahedral.cpp
motions/tetrahedral.h
motions/isosmallangle.cpp
motions/isosmallangle.h
motions/coordinates.cpp
motions/coordinates.h
motions/bimodalangle.cpp
motions/bimodalangle.h
times/lognormal.cpp
times/lognormal.h
)
target_compile_options(rwsim PUBLIC -Werror -Wall -Wextra -Wconversion -O2)

50
src/main.cpp Normal file
View File

@ -0,0 +1,50 @@
#include "utils/io.h"
#include "simulation/sims.h"
#include "motions/base.h"
#include "times/base.h"
#include <iostream>
#include <unordered_map>
#include <random>
int main (const int argc, char *argv[]) {
Arguments args;
try {
args = parse_args(argc, argv);
} catch (std::invalid_argument& error) {
std::cerr << error.what() << std::endl;
return 1;
}
std::unordered_map parameter { read_parameter(args.parameter_file) };
for (const auto& [key, value]: args.optional) {
parameter[key] = value;
}
// print parameter of simulation to inform user
std::cout << "Found parameter\n";
for (const auto& [key, value]: parameter) {
std::cout << key << ": " << std::to_string(value) << "\n";
}
std::cout << std::endl;
std::random_device rd;
std::mt19937_64 rng(rd());
Motion *motion = Motion::createFromInput(args.motion_type, rng);
Distribution *dist = Distribution::createFromInput(args.distribution_type, rng);
if (args.spectrum) {
run_spectrum(parameter, args.optional, *motion, *dist);
}
if (args.ste) {
run_ste(parameter, args.optional, *motion, *dist);
}
return 0;
}

64
src/motions/base.cpp Normal file
View File

@ -0,0 +1,64 @@
#include "base.h"
#include "coordinates.h"
#include "bimodalangle.h"
#include "isosmallangle.h"
#include "random.h"
#include "tetrahedral.h"
#include <stdexcept>
Motion::Motion(std::string name, const double delta, const double eta, std::mt19937_64& rng) : m_name(std::move(name)), m_delta(delta), m_eta(eta), m_rng(rng) {
m_uni_dist = std::uniform_real_distribution(0., 1.);
}
Motion::Motion(std::string name, std::mt19937_64& rng) : m_name(std::move(name)), m_rng(rng) {
m_uni_dist = std::uniform_real_distribution(0., 1.);
}
double Motion::omega_q(const double cos_theta, const double phi) const {
const double cos_theta_square = cos_theta * cos_theta;
const double sin_theta_square = 1. - cos_theta_square;
return M_PI * m_delta * (3. * cos_theta_square - 1. - m_eta * sin_theta_square * std::cos(2.*phi));
}
double Motion::omega_q(const SphericalPos& pos) const {
auto [cos_theta, phi] = pos;
return omega_q(cos_theta, phi);
}
SphericalPos Motion::draw_position() {
const double cos_theta = 1 - 2 * m_uni_dist(m_rng);
const double phi = 2.0 * M_PI * m_uni_dist(m_rng);
return {cos_theta, phi};
}
Motion* Motion::createFromInput(const std::string& input, std::mt19937_64& rng) {
if (input == "TetrahedralJump")
return new TetrahedralJump(rng);
if (input == "IsotropicAngle")
return new SmallAngle(rng);
if (input == "RandomJump")
return new RandomJump(rng);
if (input == "BimodalAngle")
return new BimodalAngle(rng);
throw std::invalid_argument("Invalid input " + input);
}
void Motion::setParameters(const std::unordered_map<std::string, double> &parameters) {
m_delta = parameters.at("delta");
m_eta = parameters.at("eta");
}
std::ostream& operator<<(std::ostream& os, const Motion& m) {
os << m.getName();
return os;
}

43
src/motions/base.h Normal file
View File

@ -0,0 +1,43 @@
#ifndef RWSIM_MOTIONBASE_H
#define RWSIM_MOTIONBASE_H
#include "coordinates.h"
#include <random>
#include <unordered_map>
class Motion {
public:
virtual ~Motion() = default;
Motion(std::string, double, double, std::mt19937_64&);
explicit Motion(std::string, std::mt19937_64&);
SphericalPos draw_position();
[[nodiscard]] double omega_q(double, double) const;
[[nodiscard]] double omega_q(const SphericalPos&) const;
virtual void initialize() = 0;
virtual double jump() = 0;
virtual void setParameters(const std::unordered_map<std::string, double>&);
[[nodiscard]] double getDelta() const { return m_delta; }
void setDelta(const double delta) { m_delta = delta; }
[[nodiscard]] double getEta() const { return m_eta; }
void setEta(const double eta) { m_eta = eta; }
[[nodiscard]] std::string getName() const { return m_name; }
static Motion* createFromInput(const std::string& input, std::mt19937_64& rng);
protected:
std::string m_name{"BaseMotion"};
double m_delta{1.};
double m_eta{0.};
std::mt19937_64& m_rng;
std::uniform_real_distribution<> m_uni_dist;
};
std::ostream& operator<<(std::ostream& os, const Motion& m);
#endif //RWSIM_MOTIONBASE_H

View File

@ -0,0 +1,30 @@
#include "bimodalangle.h"
#include "base.h"
BimodalAngle::BimodalAngle(const double delta, const double eta, const double angle1, const double angle2, const double prob, std::mt19937_64 &rng) :
Motion(std::string("BimodalAngle"), delta, eta, rng),
m_angle1(angle1 * M_PI / 180.0),
m_angle2(angle2 * M_PI / 180.0),
m_prob(prob) {};
BimodalAngle::BimodalAngle(std::mt19937_64 &rng) : Motion(std::string("BimodalAngle"), rng) {}
void BimodalAngle::initialize() {
m_prev_pos = draw_position();
};
double BimodalAngle::jump() {
const double angle = m_uni_dist(m_rng) < m_prob ? m_angle1 : m_angle2;
const double gamma{2 * M_PI * m_uni_dist(m_rng)};
m_prev_pos = rotate(m_prev_pos, angle, gamma);
return omega_q(m_prev_pos);
}
void BimodalAngle::setParameters(const std::unordered_map<std::string, double> &parameter) {
Motion::setParameters(parameter);
m_angle1 = parameter.at("angle1") * M_PI / 180.;
m_angle2 = parameter.at("angle2") * M_PI / 180.;
m_prob = parameter.at("probability1");
}

View File

@ -0,0 +1,23 @@
#ifndef BIMODALANGLE_H
#define BIMODALANGLE_H
#include "base.h"
class BimodalAngle : public Motion {
public:
BimodalAngle(double, double, double, double, double, std::mt19937_64& );
explicit BimodalAngle(std::mt19937_64&);
void initialize() override;
double jump() override;
void setParameters(const std::unordered_map<std::string, double> &) override;
protected:
double m_angle1{0};
double m_angle2{0};
double m_prob{0};
SphericalPos m_prev_pos{0., 0.};
};
#endif //BIMODALANGLE_H

View File

@ -0,0 +1,39 @@
#include "coordinates.h"
#include <cmath>
#include <iostream>
SphericalPos rotate(const SphericalPos& old_pos, const double alpha, const double beta) {
const double sin_alpha{std::sin(alpha)};
const double cos_alpha{std::cos(alpha)};
const double sin_beta{std::sin(beta)};
const double cos_beta{std::cos(beta)};
const double cos_theta{old_pos.cos_theta};
if (std::abs(cos_theta) == 1) {
return xyz_to_spherical(CartesianPos{cos_alpha * cos_beta, cos_alpha * sin_beta, cos_alpha * cos_theta});
}
const double norm{std::sqrt(1 - cos_theta * cos_theta) + 1e-15};
auto [x, y , z] = spherical_to_xyz(old_pos);
const auto new_pos = CartesianPos{
cos_alpha * x + sin_alpha * (-x * z * sin_beta - y * cos_beta) / norm,
cos_alpha * y + sin_alpha * (-y * z * sin_beta + x * cos_beta) / norm,
cos_alpha * z + sin_alpha * norm * sin_beta
};
return xyz_to_spherical(new_pos);
}
CartesianPos spherical_to_xyz(const SphericalPos& pos) {
const double sin_theta = std::sin(std::acos(pos.cos_theta));
return {sin_theta * std::cos(pos.phi), sin_theta * std::sin(pos.phi), pos.cos_theta};
}
SphericalPos xyz_to_spherical(const CartesianPos& pos) {
return {pos.z, std::atan2(pos.y, pos.x)};
}

20
src/motions/coordinates.h Normal file
View File

@ -0,0 +1,20 @@
#ifndef COORDINATES_H
#define COORDINATES_H
struct SphericalPos {
double cos_theta;
double phi;
};
struct CartesianPos {
double x;
double y;
double z;
};
SphericalPos rotate(const SphericalPos&, double, double);
CartesianPos spherical_to_xyz(const SphericalPos&);
SphericalPos xyz_to_spherical(const CartesianPos&);
#endif //COORDINATES_H

View File

@ -0,0 +1,26 @@
#include "isosmallangle.h"
#include "coordinates.h"
#include <iostream>
SmallAngle::SmallAngle(const double delta, const double eta, const double chi, std::mt19937_64 &rng) :
Motion(std::string("IsotropicAngle"), delta, eta, rng), m_chi(chi * M_PI / 180.0) {};
SmallAngle::SmallAngle(std::mt19937_64 &rng) : Motion(std::string("IsotropicAngle"), rng) {}
void SmallAngle::initialize() {
m_prev_pos = draw_position();
};
double SmallAngle::jump() {
const double gamma{2 * M_PI * m_uni_dist(m_rng)};
m_prev_pos = rotate(m_prev_pos, m_chi, gamma);
return omega_q(m_prev_pos);
}
void SmallAngle::setParameters(const std::unordered_map<std::string, double> &parameters) {
m_chi = parameters.at("angle") * M_PI / 180.0;
Motion::setParameters(parameters);
}

View File

@ -0,0 +1,22 @@
#ifndef RWSIM_MOTIONISOSMALLANGLE_H
#define RWSIM_MOTIONISOSMALLANGLE_H
#include "base.h"
#include "coordinates.h"
class SmallAngle final : public Motion {
public:
SmallAngle(double, double, double, std::mt19937_64& );
explicit SmallAngle(std::mt19937_64&);
void initialize() override;
double jump() override;
void setParameters(const std::unordered_map<std::string, double> &) override;
private:
double m_chi{0};
SphericalPos m_prev_pos{0., 0.};
};
#endif //RWSIM_MOTIONISOSMALLANGLE_H

13
src/motions/random.cpp Normal file
View File

@ -0,0 +1,13 @@
#include "random.h"
RandomJump::RandomJump(const double delta, const double eta, std::mt19937_64 &rng) : Motion(std::string("RandomJump"), delta, eta, rng) {}
RandomJump::RandomJump(std::mt19937_64 &rng) : Motion(std::string("RandomJump"), rng) {}
void RandomJump::initialize() {}
double RandomJump::jump() {
return omega_q(draw_position());
}

17
src/motions/random.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef RWSIM_MOTIONRANDOMJUMP_H
#define RWSIM_MOTIONRANDOMJUMP_H
#include "base.h"
#include <random>
class RandomJump final : public Motion {
public:
RandomJump(double, double, std::mt19937_64&);
explicit RandomJump(std::mt19937_64&);
void initialize() override;
double jump() override;
};
#endif //RWSIM_MOTIONRANDOMJUMP_H

View File

@ -0,0 +1,29 @@
#include "tetrahedral.h"
#include <random>
#include "tetrahedral.h"
TetrahedralJump::TetrahedralJump(const double delta, const double eta, std::mt19937_64& rng) :
Motion(std::string{"FourSiteTetrahedral"}, delta, eta, rng) {}
TetrahedralJump::TetrahedralJump(std::mt19937_64& rng) : Motion(std::string{"FourSiteTetrahedral"}, rng) {}
void TetrahedralJump::initialize() {
const auto pos = draw_position();
m_corners[0] = omega_q(pos);
const double alpha = 2. * M_PI * m_uni_dist(m_rng);
for (int i = 1; i<4; i++) {
auto corner_pos = rotate(pos, m_beta, alpha + (i-1) * 2*M_PI/3.);
m_corners[i] = omega_q(corner_pos);
}
}
double TetrahedralJump::jump() {
m_corner_idx += m_chooser(m_rng);
m_corner_idx %= 4;
return m_corners[m_corner_idx];
}

28
src/motions/tetrahedral.h Normal file
View File

@ -0,0 +1,28 @@
#ifndef RWSIM_MOTIONTETRAHEDRAL_H
#define RWSIM_MOTIONTETRAHEDRAL_H
#include "base.h"
#include <random>
#include <cmath>
#include <array>
class TetrahedralJump final : public Motion {
public:
TetrahedralJump(double, double, std::mt19937_64&);
explicit TetrahedralJump(std::mt19937_64&);
void initialize() override;
double jump() override;
private:
const double m_beta{std::acos(-1/3.)};
std::array<double, 4> m_corners{};
int m_corner_idx{0};
std::uniform_int_distribution<> m_chooser{1, 3};
};
#endif //RWSIM_MOTIONTETRAHEDRAL_H

207
src/simulation/sims.cpp Normal file
View File

@ -0,0 +1,207 @@
#include "sims.h"
#include "../motions/base.h"
#include "../times/base.h"
#include "../utils/functions.h"
#include "../utils/ranges.h"
#include "../utils/io.h"
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <map>
#include <string>
#include <vector>
#include <cmath>
#include <chrono>
void run_spectrum(
std::unordered_map<std::string, double>& parameter,
std::unordered_map<std::string, double> optional,
Motion& motion,
Distribution& dist
) {
const int num_walker = static_cast<int>(parameter["num_walker"]);
// time axis for all time signals
const int num_acq = static_cast<int>(parameter["num_acq"]);
const std::vector<double> t_fid = arange(num_acq, parameter["dwell_time"]);
const std::vector<double> echo_times = linspace(parameter["techo_start"], parameter["techo_stop"], static_cast<int>(parameter["techo_steps"]));
// make timesignal vectors and set them to zero
std::map<double, std::vector<double>> fid_dict;
for (auto t_echo_i: echo_times) {
fid_dict[t_echo_i] = std::vector<double>(num_acq);
std::fill(fid_dict[t_echo_i].begin(), fid_dict[t_echo_i].end(), 0.);
}
// calculate min length of a trajectory
const double tmax = *std::max_element(echo_times.begin(), echo_times.end()) * 2 + t_fid.back();
// set parameter in distribution and motion model
dist.setParameters(parameter);
motion.setParameters(parameter);
const auto start = printStart(optional);
auto last_print_out = std::chrono::system_clock::now();
// let the walker walk
for (int mol_i = 0; mol_i < num_walker; mol_i++){
std::vector<double> traj_time{};
std::vector<double> traj_phase{};
make_trajectory(motion, dist, tmax, traj_time, traj_phase);
for (auto& [t_echo_j, fid_j] : fid_dict) {
// get phase at echo pulse
int current_pos = nearest_index(traj_time, t_echo_j, 0);
const double phase_techo = lerp(traj_time, traj_phase, t_echo_j, current_pos);
for (int acq_idx = 0; acq_idx < num_acq; acq_idx++) {
const double real_time = t_fid[acq_idx] + 2 * t_echo_j;
current_pos = nearest_index(traj_time, real_time, current_pos);
const double phase_acq = lerp(traj_time, traj_phase, real_time, current_pos);
fid_j[acq_idx] += std::cos(phase_acq - 2 * phase_techo) / num_walker;
}
last_print_out = printSteps(last_print_out, start, num_walker, mol_i);
}
}
// write fid to files
save_parameter_to_file("timesignal", motion.getName(), dist.getName(), parameter, optional);
save_data_to_file("timesignal", motion.getName(), dist.getName(), t_fid, fid_dict, optional);
printEnd(start);
}
void run_ste(
std::unordered_map<std::string, double>& parameter,
std::unordered_map<std::string, double> optional,
Motion& motion,
Distribution& dist
) {
const int num_walker = static_cast<int>(parameter[std::string("num_walker")]);
const int num_mix_times = static_cast<int>(parameter[std::string("tmix_steps")]);
const std::vector<double> evolution_times = linspace(parameter["tevo_start"], parameter["tevo_stop"], static_cast<int>(parameter["tevo_steps"]));
const std::vector<double> mixing_times = logspace(parameter["tmix_start"], parameter["tmix_stop"], num_mix_times);
// make ste decay vectors and set them to zero
std::map<double, std::vector<double>> cc_dict;
std::map<double, std::vector<double>> ss_dict;
for (auto t_evo_i: evolution_times) {
cc_dict[t_evo_i] = std::vector<double>(num_mix_times);
ss_dict[t_evo_i] = std::vector<double>(num_mix_times);
std::fill(ss_dict[t_evo_i].begin(), ss_dict[t_evo_i].end(), 0.);
}
// each trajectory must have a duration of at least tmax
const double tmax = *std::max_element(evolution_times.begin(), evolution_times.end()) * 2 + *std::max_element(mixing_times.begin(), mixing_times.end());
// set parameter in distribution and motion model
dist.setParameters(parameter);
motion.setParameters(parameter);
const auto start = printStart(optional);
auto last_print_out = std::chrono::system_clock::now();
// let the walker walk
for (int mol_i = 0; mol_i < num_walker; mol_i++){
std::vector<double> traj_time{};
std::vector<double> traj_phase{};
make_trajectory(motion, dist, tmax, traj_time, traj_phase);
for (auto& [t_evo_j, _] : cc_dict) {
auto& cc_j = cc_dict[t_evo_j];
auto& ss_j = ss_dict[t_evo_j];
// get phase at beginning of mixing time
int current_pos = nearest_index(traj_time, t_evo_j, 0);
const double dephased = lerp(traj_time, traj_phase, t_evo_j, current_pos);
const double cc_tevo = std::cos(dephased);
const double ss_tevo = std::sin(dephased);
for (int mix_idx = 0; mix_idx < num_mix_times; mix_idx++) {
// get phase at end of mixing time
const double time_end_mix = mixing_times[mix_idx] + t_evo_j;
current_pos = nearest_index(traj_time, time_end_mix, current_pos);
const double phase_mix_end = lerp(traj_time, traj_phase, time_end_mix, current_pos);
// get phase at echo position
const double time_echo = mixing_times[mix_idx] + 2 * t_evo_j;
current_pos = nearest_index(traj_time, time_echo, current_pos);
const double rephased = lerp(traj_time, traj_phase, time_echo, current_pos) - phase_mix_end;
cc_j[mix_idx] += cc_tevo * std::cos(rephased) / num_walker;
ss_j[mix_idx] += ss_tevo * std::sin(rephased) / num_walker;
}
}
last_print_out = printSteps(last_print_out, start, num_walker, mol_i);
}
// write to files
save_parameter_to_file("ste", motion.getName(), dist.getName(), parameter, optional);
save_data_to_file("coscos", motion.getName(), dist.getName(), mixing_times, cc_dict, optional);
save_data_to_file("sinsin", motion.getName(), dist.getName(), mixing_times, ss_dict, optional);
printEnd(start);
}
void make_trajectory(
Motion& motion,
Distribution& dist,
const double t_max,
std::vector<double>& out_time,
std::vector<double>& out_phase
) {
// Starting position
double t_passed = 0;
double phase = 0;
motion.initialize();
dist.initialize();
out_time.emplace_back(t_passed);
out_phase.emplace_back(0);
while (t_passed < t_max) {
const double t = dist.tau_wait();
t_passed += t;
phase += motion.jump() * t;
out_time.emplace_back(t_passed);
out_phase.emplace_back(phase);
}
}
std::chrono::system_clock::time_point printStart(std::unordered_map<std::string, double> &optional) {
const auto start = std::chrono::system_clock::now();
const time_t start_time = std::chrono::system_clock::to_time_t(start);
std::cout << "Random walk for ";
for (const auto& [key, value] : optional) {
std::cout << key << " = " << value << "; ";
}
std::cout << std::endl;
std::cout << "Start: " << ctime(&start_time);
return start;
}
void printEnd(const std::chrono::system_clock::time_point start) {
const auto end = std::chrono::system_clock::now();
const std::chrono::duration<float> duration = end - start;
const time_t end_time = std::chrono::system_clock::to_time_t(end);
std::cout << "End: " << ctime(&end_time);
std::cout << "Duration: " << duration.count() << "s\n" << std::endl;
}

45
src/simulation/sims.h Normal file
View File

@ -0,0 +1,45 @@
#ifndef RWSIM_SIMS_H
#define RWSIM_SIMS_H
#include "../motions/base.h"
#include "../times/base.h"
#include <unordered_map>
#include <string>
#include <chrono>
/**
* @brief Run simulation for spectra
*
* @param parameter Dictionary of parameter for simulation
* @param optional Dictionary of parameter set via command line
* @param motion Motion model
* @param dist Distribution of correlation times
*/
void run_spectrum(std::unordered_map<std::string, double>& parameter, std::unordered_map<std::string, double> optional, Motion& motion, Distribution& dist);
/**
* @brief Run simulation for stimulated echoes
*
* @param parameter Dictionary of parameter for simulation
* @param optional Dictionary of parameter set via command line
* @param motion Motion model
* @param dist Distribution of correlation times
*/
void run_ste(std::unordered_map<std::string, double>& parameter, std::unordered_map<std::string, double> optional, Motion& motion, Distribution& dist);
/**
* @brief Create trajectory of a single walker
*
* @param motion Motion model
* @param dist Distribution of correlation times
* @param t_max Double that defines maximum time of trajectory
* @param out_time Vector of waiting times
* @param out_phase Vector of phase between waiting times
*/
void make_trajectory(Motion& motion, Distribution& dist, double t_max, std::vector<double>& out_time, std::vector<double>& out_phase);
std::chrono::system_clock::time_point printStart(std::unordered_map<std::string, double> &optional);
void printEnd(std::chrono::system_clock::time_point start);
#endif //RWSIM_SIMS_H

27
src/times/base.cpp Normal file
View File

@ -0,0 +1,27 @@
#include "base.h"
#include "delta.h"
#include "lognormal.h"
#include <stdexcept>
Distribution::Distribution(std::string name, const double tau, std::mt19937_64 &rng) : m_name(std::move(name)), m_tau(tau), m_tau_jump(tau), m_rng(rng) {}
Distribution::Distribution(std::string name, std::mt19937_64 &rng) : m_name(std::move(name)), m_rng(rng) {}
double Distribution::tau_wait() const {
return std::exponential_distribution(1./m_tau_jump)(m_rng);
}
void Distribution::setParameters(const std::unordered_map<std::string, double> &parameters) {
m_tau = parameters.at("tau");
}
Distribution* Distribution::createFromInput(const std::string& input, std::mt19937_64& rng) {
if (input == "Delta")
return new DeltaDistribution(rng);
if (input == "LogNormal")
return new LogNormalDistribution(rng);
throw std::invalid_argument("Invalid input " + input);
}

33
src/times/base.h Normal file
View File

@ -0,0 +1,33 @@
#ifndef RWSIM_TIMESBASE_H
#define RWSIM_TIMESBASE_H
#include <random>
#include <unordered_map>
class Distribution {
public:
virtual ~Distribution() = default;
Distribution(std::string, double, std::mt19937_64&);
explicit Distribution(std::string, std::mt19937_64&);
[[nodiscard]] double getTau() const { return m_tau; }
void setTau(const double tau) { m_tau = tau; }
[[nodiscard]] std::string getName() const { return m_name; };
virtual void setParameters(const std::unordered_map<std::string, double>&);
virtual void initialize() = 0;
virtual void draw_tau() = 0;
[[nodiscard]] double tau_wait() const;
static Distribution* createFromInput(const std::string& input, std::mt19937_64& rng);
protected:
std::string m_name{"BaseDistribution"};
double m_tau{1.};
double m_tau_jump{1.};
std::mt19937_64& m_rng;
};
#endif //RWSIM_TIMESBASE_H

11
src/times/delta.cpp Normal file
View File

@ -0,0 +1,11 @@
#include "delta.h"
DeltaDistribution::DeltaDistribution(const double tau, std::mt19937_64& rng) : Distribution(std::string("Delta"), tau, rng) {}
DeltaDistribution::DeltaDistribution(std::mt19937_64& rng) : Distribution(std::string("Delta"), rng) {}
void DeltaDistribution::initialize() {
m_tau_jump = m_tau;
}
void DeltaDistribution::draw_tau() {}

15
src/times/delta.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef RWSIM_TIMESDELTA_H
#define RWSIM_TIMESDELTA_H
#include "base.h"
class DeltaDistribution final : public Distribution {
public:
DeltaDistribution(double, std::mt19937_64&);
explicit DeltaDistribution(std::mt19937_64 &rng);
void initialize() override;
void draw_tau() override;
};
#endif //RWSIM_TIMESDELTA_H

19
src/times/lognormal.cpp Normal file
View File

@ -0,0 +1,19 @@
#include "lognormal.h"
#include <cmath>
LogNormalDistribution::LogNormalDistribution(const double tau, const double sigma, std::mt19937_64& rng) : Distribution(std::string("LogNormal"), tau, rng), m_sigma(sigma), m_distribution(std::log(tau), sigma) {}
LogNormalDistribution::LogNormalDistribution(std::mt19937_64& rng) : Distribution(std::string("LogNormal"), rng) {}
void LogNormalDistribution::setParameters(const std::unordered_map<std::string, double> &parameters) {
m_sigma = parameters.at("sigma");
Distribution::setParameters(parameters);
}
void LogNormalDistribution::initialize() {
m_distribution = std::lognormal_distribution(std::log(m_tau), m_sigma);
m_tau_jump = m_distribution(m_rng);
}
void LogNormalDistribution::draw_tau() {
m_tau_jump = m_distribution(m_rng);
}

23
src/times/lognormal.h Normal file
View File

@ -0,0 +1,23 @@
#ifndef LOGNORMAL_H
#define LOGNORMAL_H
#include "base.h"
#include <random>
#include <set>
class LogNormalDistribution final : public Distribution {
public:
LogNormalDistribution(double, double, std::mt19937_64&);
explicit LogNormalDistribution(std::mt19937_64 &rng);
void setParameters(const std::unordered_map<std::string, double> &) override;
void initialize() override;
void draw_tau() override;
private:
double m_sigma{1};
std::lognormal_distribution<> m_distribution;
};
#endif //LOGNORMAL_H

53
src/utils/functions.cpp Normal file
View File

@ -0,0 +1,53 @@
#include <vector>
#include <array>
#include <chrono>
#include <iostream>
#include <cmath>
#include <utility>
int nearest_index(const std::vector<double> &x_ref, const double x, int start=0) {
while (x > x_ref[start+1]) {
start++;
}
return start;
}
double lerp(const std::vector<double>& x_ref, const std::vector<double>& y_ref, const double x, const int i) {
/*
* Linear interpolation between two
*/
const double x_left = x_ref[i];
const double y_left = y_ref[i];
const double x_right = x_ref[i+1];
const double y_right = y_ref[i+1];
const double dydx = (y_right - y_left) / ( x_right - x_left );
return y_left + dydx * (x - x_left);
}
std::chrono::time_point<std::chrono::system_clock> printSteps(
/*
* Prints roughly every 10 seconds how many runs were done and gives a time estimation
*/
const std::chrono::time_point<std::chrono::system_clock> last_print_out,
const std::chrono::time_point<std::chrono::system_clock> start,
const int total,
const int steps
) {
const auto now = std::chrono::high_resolution_clock::now();
if (const std::chrono::duration<float> duration = now - last_print_out; duration.count() < 10.) {
return last_print_out;
}
const std::chrono::duration<float> duration = now - start;
const auto passed = duration.count();
std::cout << steps << " of " << total << " steps: " << passed << "s passed; ~" << passed * static_cast<float>(total-steps) / static_cast<float>(steps) << "s remaining\n";
return now;
}

14
src/utils/functions.h Normal file
View File

@ -0,0 +1,14 @@
#ifndef RWSIM_FUNCTIONS_H
#define RWSIM_FUNCTIONS_H
#include <vector>
#include <chrono>
int nearest_index(const std::vector<double>&, double, int);
double lerp(const std::vector<double>&, const std::vector<double>&, double, int);
std::chrono::time_point<std::chrono::system_clock> printSteps(std::chrono::time_point<std::chrono::system_clock>, std::chrono::time_point<std::chrono::system_clock>, int, int);
#endif

195
src/utils/io.cpp Normal file
View File

@ -0,0 +1,195 @@
#include "io.h"
#include <sstream>
#include <fstream>
#include <iostream>
#include <algorithm>
#include <complex>
#include <vector>
#include <iomanip>
#include <unordered_map>
#include <map>
#include <string>
#include <filesystem>
std::pair<std::string, double> get_optional_parameter(std::vector<std::string>::const_iterator &it) {
std::string stripped_arg;
if (it->size() > 2 && it->at(0) == '-' && it->at(1) == '-') {
stripped_arg = it->substr(2, it->size());
} else if (it->size() > 1 && it->at(0) == '-') {
stripped_arg = it->substr(1, it->size());
}
std::transform(stripped_arg.begin(), stripped_arg.end(), stripped_arg.begin(), [](unsigned char c) { return std::tolower(c); });
const auto stripped_value = std::stod(*(++it), nullptr);
return std::make_pair(stripped_arg, stripped_value);
}
/**
* @brief Read and parse arguments coming from the command line
* @param argc Number of command-line arguments
* @param argv List of command-line arguments
* @return Arguments
*/
Arguments parse_args(const int argc, char* argv[]) {
if (argc < 3) {
throw std::runtime_error("Not enough arguments: missing parameter file");
}
Arguments args;
// convert to vector to use iterator for loop
const std::vector<std::string> input_args(argv + 1, argv + argc);
for (auto it = input_args.begin(); it != input_args.end(); ++it) {
// check for optional parameter
if (it->at(0) == '-') {
// only --spectrum and --ste are parameter that are predefined
if (*it == "--spectrum") {
args.spectrum = true;
continue;
}
if (*it == "--ste") {
args.ste = true;
continue;
}
// all other arguments are optional parameter
auto [option_name, option_value] = get_optional_parameter(it);
args.optional[option_name] = option_value;
continue;
}
// Two positional parameters are defined: 1. Location of config file; 2. Name of motion model
if (args.parameter_file.empty()) {
args.parameter_file = *it;
continue;
}
if (args.motion_type.empty()) {
args.motion_type = *it;
continue;
}
if (args.distribution_type.empty()) {
args.distribution_type = *it;
continue;
}
throw std::invalid_argument("too many positional arguments");
}
if (args.parameter_file.empty() || args.motion_type.empty() || args.distribution_type.empty()) {
throw std::invalid_argument("Missing argument");
}
return args;
}
std::unordered_map<std::string, double> read_parameter(const std::filesystem::path& infile) {
if (!std::filesystem::exists(infile)) {
std::cerr << "File " << infile << " does not exist" << std::endl;
exit(1);
}
std::ifstream instream(infile);
std::unordered_map<std::string, double> parameter;
std::string line;
std::string delim = "=";
std::string key;
std::string value;
size_t delim_pos;
while (std::getline(instream, line)) {
// skip comment lines starting with #, and empty lines
if (line[0] == '#' || line.length() == 1) continue;
// strip spaces from line to have always key=value
line.erase(std::remove(line.begin(), line.end(), ' '), line.end());
// split at '=' character and add to map
delim_pos = line.find('=');
key = line.substr(0, delim_pos);
value = line.substr(delim_pos+1);
parameter[key] = std::stod(value);
}
return parameter;
}
void save_parameter_to_file(
const std::string& resulttype,
const std::string& motiontype,
const std::string& disttype,
std::unordered_map<std::string, double>& parameter,
std::unordered_map<std::string, double>& optional
) {
std::ostringstream parameter_filename;
parameter_filename << resulttype << "_" << motiontype << "_" << disttype;
parameter_filename << std::setprecision(6) << std::scientific;
for (const auto& [key, value]: optional) {
parameter_filename << "_" << key << "=" << value;
}
parameter_filename << "_parameter.txt";
{
// write data to file, columns are secondary axis (echo delay, evolution times)
std::string datafile = parameter_filename.str();
std::ofstream filestream(datafile, std::ios::out);
for (const auto& [key, value]: parameter) {
filestream << key << "=" << value << "\n";
}
}
}
void save_data_to_file(
const std::string& resulttype,
const std::string& motiontype,
const std::string& disttype,
const std::vector<double>& x,
const std::map<double, std::vector<double>>& y,
std::unordered_map<std::string, double>& optional
) {
// make file name
std::ostringstream datafile_name;
datafile_name << resulttype << "_" << motiontype << "_" << disttype;
datafile_name << std::setprecision(6) << std::scientific;
for (const auto& [key, value]: optional) {
datafile_name << "_" << key << "=" << value;
}
datafile_name << ".dat";
{
// write data to file, columns are secondary axis (echo delay, evolution times)
std::string datafile = datafile_name.str();
std::ofstream filestream(datafile, std::ios::out);
// first line are values of secondary axis
filestream << "#";
for (const auto& [t_echo_j, _] : y) {
filestream << t_echo_j << "\t";
}
filestream << std::endl;
// write values to file
auto size = x.size();
for (unsigned int i = 0; i < size; i++) {
filestream << x[i];
for (const auto& [_, fid_j] : y) {
filestream << "\t" << fid_j[i];
}
filestream << "\n";
}
}
}

27
src/utils/io.h Normal file
View File

@ -0,0 +1,27 @@
#ifndef RWSIM_IO_H
#define RWSIM_IO_H
#include <unordered_map>
#include <map>
#include <string>
#include <filesystem>
#include <vector>
struct Arguments {
std::string parameter_file{};
bool ste = false;
bool spectrum = false;
std::string motion_type{};
std::string distribution_type{};
std::unordered_map<std::string, double> optional;
};
Arguments parse_args(int argc, char* argv[]);
std::pair<std::string, double> get_optional_parameter(std::vector<std::string>::const_iterator &it);
std::unordered_map<std::string, double> read_parameter(const std::filesystem::path&);
void save_parameter_to_file(const std::string&, const std::string&, const std::string&, std::unordered_map<std::string, double>&, std::unordered_map<std::string, double>&);
void save_data_to_file(const std::string&, const std::string&, const std::string&, const std::vector<double>&, const std::map<double, std::vector<double>>&, std::unordered_map<std::string, double>&);
#endif

55
src/utils/ranges.cpp Normal file
View File

@ -0,0 +1,55 @@
#include <vector>
#include <algorithm>
#include <cmath>
#include "ranges.h"
std::vector<double> arange(const int size, const double spacing=1.) {
std::vector<double> out(size);
std::generate(out.begin(), out.end(), [n = 0, spacing]() mutable { return n++ * spacing; });
return out;
}
std::vector<double> linspace(const double start, const double stop, const int steps) {
std::vector<double> range;
if (steps == 0) {
return range;
}
if (steps == 1) {
range.push_back(start);
return range;
}
const double stepsize = (stop-start) / (steps-1);
for (int i=0; i<steps; i++) {
range.push_back(start + stepsize * i);
}
return range;
}
std::vector<double> logspace(const double start, const double stop, const int steps) {
std::vector<double> range;
if (steps == 0) {
return range;
}
if (steps == 1) {
range.push_back(start);
return range;
}
const double logstart = std::log10(start);
const double logstop = std::log10(stop);
const double stepsize = (logstop-logstart) / (steps-1);
for (int i=0; i<steps; i++) {
range.push_back(pow(10, logstart + stepsize * i));
}
return range;
}

12
src/utils/ranges.h Normal file
View File

@ -0,0 +1,12 @@
#ifndef RWSIM_RANGES_H
#define RWSIM_RANGES_H
#include <vector>
std::vector<double> arange(int, double);
std::vector<double> linspace(double, double, int);
std::vector<double> logspace(double, double, int);
#endif