// // Created by dominik on 8/16/24. // #include #include "tetrahedral.h" TetrahedralJump::TetrahedralJump(const double delta, const double eta, std::mt19937_64& rng) : Motion(delta, eta, rng) {} TetrahedralJump::TetrahedralJump(std::mt19937_64& rng) : Motion(rng) {} void TetrahedralJump::initialize() { // const auto [cos_theta, phi] = draw_position(); // // m_corners[0] = omega_q(cos_theta, phi); // // const double alpha = 2. * M_PI * m_uni_dist(m_rng); // std::cout << alpha << std::endl; // v1[0] = sin(phi0)*sin(teta0); // v2[0] = cos(phi0)*sin(teta0); // v3[0] = cos(teta0); // // abs = v1[0]*v1[0]+v2[0]*v2[0]+v3[0]*v3[0]; // Normalization // v1[0] = v1[0]/abs; // v2[0] = v2[0]/abs; // v3[0] = v3[0]/abs; // // /*Calculating the components of the other orientationts. Compare Master Thesis M. Sattig,corrected Version (Share/Abschlussarbeiten)*/ // norm = sqrt(1 - v3[0]*v3[0])+1E-12; // normI = 1.0/(norm); // // cosgama = cos(delta0); // singama = sin(delta0); // v1[1] = v1[0]*cosBETA + sinBETA*normI*(-v1[0]*v3[0]*singama - v2[0]*cosgama); // v2[1] = v2[0]*cosBETA + sinBETA*normI*(-v2[0]*v3[0]*singama + v1[0]*cosgama); // v3[1] = v3[0]*cosBETA + sinBETA*norm*singama; // // cosgama = cos(gama + delta0); // singama = sin(gama + delta0); // v1[2] = v1[0]*cosBETA + sinBETA*normI*(-v1[0]*v3[0]*singama - v2[0]*cosgama); // v2[2] = v2[0]*cosBETA + sinBETA*normI*(-v2[0]*v3[0]*singama + v1[0]*cosgama); // v3[2] = v3[0]*cosBETA + sinBETA*norm*singama; // // cosgama = cos(2.0*gama + delta0); // singama = sin(2.0*gama + delta0); // v1[3] = v1[0]*cosBETA + sinBETA*normI*(-v1[0]*v3[0]*singama - v2[0]*cosgama); // v2[3] = v2[0]*cosBETA + sinBETA*normI*(-v2[0]*v3[0]*singama + v1[0]*cosgama); // v3[3] = v3[0]*cosBETA + sinBETA*norm*singama; } double TetrahedralJump::jump() { return 0.; }