import pathlib import numpy as np from matplotlib import pyplot as plt from scipy.optimize import curve_fit from python.helpers import read_parameter_file def ste_decay(x: np.ndarray, m0: float, t: float, beta: float, finfty: float) -> np.ndarray: """ Calculate stimulated-echo decay. :param x: Mixing times in seconds. :param m0: Amplitude :param t: Correlation time in seconds :param beta: Stretching parameter :param finfty: Final plateau :return: Stimulated-echo decay """ return m0 * ((1-finfty) * np.exp(-(x/t)**beta) + finfty) def fit_decay(x: np.ndarray, y: np.ndarray, tevo: np.ndarray, verbose: bool = True) -> tuple[np.ndarray, np.ndarray, np.ndarray]: num_evo = y.shape[1] if num_evo != tevo.size: tevo = np.arange(num_evo) tau_fit = np.empty((num_evo, 2)) tau_fit[:, 0] = tevo beta_fit = np.empty((num_evo, 2)) beta_fit[:, 0] = tevo finfty_fit = np.empty((num_evo, 2)) finfty_fit[:, 0] = tevo scaled_y = (y-y[-1, :]) / (y[0, :]-y[-1, :]) for j in range(num_evo): p0 = [y[0, 0], x[np.argmin(np.abs(scaled_y[:, j]-np.exp(-1)))], 0.8, 0.1] try: res = curve_fit(ste_decay, x, y[:, j], p0, bounds=[(0, 0, 0., 0), (np.inf, np.inf, 1, 1)]) except RuntimeError as e: print(f'Fit {j+1} of {num_evo} failed with {e.args}') continue m0, tauc, beta, finfty = res[0] if verbose: print(f'Fit {j+1} of {num_evo}: tau_c = {tauc:.6e}, beta={beta:.4e}, amplitude = {m0: .4e}, f_infty={finfty:.4e}') tau_fit[j, 1] = tauc beta_fit[j, 1] = beta finfty_fit[j, 1] = finfty return tau_fit, beta_fit, finfty_fit def fit_ste( parameter_file: pathlib.Path, prefix: str, plot_decays: bool = True, verbose: bool = True, ) -> tuple[str, np.ndarray, np.ndarray, np.ndarray]: # read simulation parameters parameter = read_parameter_file(parameter_file) # files have form ste_arg=0.000000e+01_parameter.txt, first remove ste part then parameter.txt to get variables varied_string = str(parameter_file).partition('_')[-1].rpartition('_')[0] # make evolution times tevo = np.linspace(parameter['tevo_start'], parameter['tevo_stop'], num=int(parameter['tevo_steps'])) if varied_string: raw_data = np.loadtxt(parameter_file.with_name(f'{prefix}_{varied_string}.dat')) else: raw_data = np.loadtxt(parameter_file.with_name(f'{prefix}.dat')) t_mix = raw_data[:, 0] decay = raw_data[:, 1:] if plot_decays: fig, ax = plt.subplots() ax.set_title(prefix) ax.semilogx(t_mix, decay, '.') fig.show() print(f'Fit {prefix}') tau, beta, finfty = fit_decay(t_mix, decay, tevo, verbose=verbose) return varied_string, tau, beta, finfty