import numpy import numpy as np from matplotlib import pyplot # parameter for spectrum simulations lb = 2e3 pulse_length = 2e-6 def dampening(x: np.ndarray, apod: float) -> np.ndarray: """ Calculate additional dampening to account e.g. for field inhomogeneities. :param x: Time axis in seconds :param apod: Dampening factor in 1/seconds :return: Exponential dampening """ return np.exp(-apod * x) def pulse_attn(freq: np.ndarray, t_pulse: float) -> np.ndarray: """ Calculate attenuation of signal to account for finite pulse lengths. See Schmitt-Rohr/Spieß, eq. 2.126 for more information. :param freq: Frequency axis in Hz :param t_pulse: Assumed pulse length in s :return: Attenuation factor. """ # cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2 pi_half_squared = np.pi**2 / 4 omega = 2 * np.pi * freq numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2)) denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4) return np.pi * numerator / denominator / 2 def post_process_spectrum(taus, apod, tpulse): reduction_factor = np.zeros((taus.size, 5)) # hard-coded t_echo :( for i, tau in enumerate(taus): try: raw_data = np.loadtxt(f'fid_tau={tau:.6e}.dat') except OSError: continue t = raw_data[:, 0] timesignal = raw_data[:, 1:] timesignal *= dampening(t, apod)[:, None] timesignal[0, :] /= 2 # FT to spectrum freq = np.fft.fftshift(np.fft.fftfreq(t.size, d=1e-6)) spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real spec *= pulse_attn(freq, t_pulse=tpulse)[:, None] reduction_factor[i, :] = 2*timesignal[0, :] plt.plot(freq, spec) plt.show() plt.semilogx(taus, reduction_factor, '.') plt.show()