71 lines
1.9 KiB
Python
71 lines
1.9 KiB
Python
import numpy
|
|
import numpy as np
|
|
from matplotlib import pyplot
|
|
|
|
|
|
|
|
# parameter for spectrum simulations
|
|
lb = 2e3
|
|
pulse_length = 2e-6
|
|
|
|
|
|
def dampening(x: np.ndarray, apod: float) -> np.ndarray:
|
|
"""
|
|
Calculate additional dampening to account e.g. for field inhomogeneities.
|
|
|
|
:param x: Time axis in seconds
|
|
:param apod: Dampening factor in 1/seconds
|
|
:return: Exponential dampening
|
|
"""
|
|
|
|
return np.exp(-apod * x)
|
|
|
|
|
|
def pulse_attn(freq: np.ndarray, t_pulse: float) -> np.ndarray:
|
|
"""
|
|
Calculate attenuation of signal to account for finite pulse lengths.
|
|
|
|
See Schmitt-Rohr/Spieß, eq. 2.126 for more information.
|
|
|
|
:param freq: Frequency axis in Hz
|
|
:param t_pulse: Assumed pulse length in s
|
|
:return: Attenuation factor.
|
|
"""
|
|
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
|
|
pi_half_squared = np.pi**2 / 4
|
|
omega = 2 * np.pi * freq
|
|
|
|
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
|
|
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
|
|
|
|
return np.pi * numerator / denominator / 2
|
|
|
|
|
|
def post_process_spectrum(taus, apod, tpulse):
|
|
reduction_factor = np.zeros((taus.size, 5)) # hard-coded t_echo :(
|
|
|
|
for i, tau in enumerate(taus):
|
|
try:
|
|
raw_data = np.loadtxt(f'fid_tau={tau:.6e}.dat')
|
|
except OSError:
|
|
continue
|
|
|
|
t = raw_data[:, 0]
|
|
timesignal = raw_data[:, 1:]
|
|
|
|
timesignal *= dampening(t, apod)[:, None]
|
|
timesignal[0, :] /= 2
|
|
|
|
# FT to spectrum
|
|
freq = np.fft.fftshift(np.fft.fftfreq(t.size, d=1e-6))
|
|
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
|
|
spec *= pulse_attn(freq, t_pulse=tpulse)[:, None]
|
|
|
|
reduction_factor[i, :] = 2*timesignal[0, :]
|
|
|
|
plt.plot(freq, spec)
|
|
plt.show()
|
|
|
|
plt.semilogx(taus, reduction_factor, '.')
|
|
plt.show()
|