python/rwsims/tetrahedral_spectrum_chunk.py

166 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-06-12 17:34:45 +00:00
from time import time
from numpy.typing import ArrayLike
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
# spectral parameter
delta = 161e3 # in Hz
eta = 0
lb = 5e3 # in Hz
# correlation time
2024-06-19 17:10:49 +00:00
tau = np.logspace(-8, -1, num=15) # in s
2024-06-12 17:34:45 +00:00
# acquisition parameter
acq_length = 4096
dt = 1e-6 # in s
2024-06-19 17:10:49 +00:00
t_echo = [5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
2024-06-12 17:34:45 +00:00
# derived parameter
t_acq = np.arange(acq_length) * dt
t_max = acq_length*dt + 2*max(t_echo)
dampening = np.exp(-lb * t_acq)
# random number generator
seed = None
rng = np.random.default_rng(seed)
# number of random walkers
2024-06-19 17:10:49 +00:00
num_traj = 1
2024-06-12 17:34:45 +00:00
def omega_q(delta_: float, eta_: float, theta_: ArrayLike, phi_: ArrayLike) -> np.ndarray:
cos_theta = np.cos(theta_)
sin_theta = np.sin(theta_)
return 2 * np.pi * delta_ * (3 * cos_theta * cos_theta - 1 + eta_ * sin_theta*sin_theta * np.cos(2*phi_))
def rotate(x_in: float, y_in: float, z_in: float, a: float) -> tuple[float, float]:
# rotation by tetrahedral angle is a given, only second angle is free parameter
beta = 109.45 * np.pi / 180.
cos_beta = np.cos(beta)
sin_beta = np.sin(beta)
cos_alpha = np.cos(a)
sin_alpha = np.sin(a)
scale = np.sqrt(1 - z_in * z_in) + 1e-12
x = x_in * cos_beta + sin_beta / scale * (x_in * z_in * cos_alpha - y_in * sin_alpha)
y = y_in * cos_beta + sin_beta / scale * (y_in * z_in * cos_alpha + x_in * sin_alpha)
z = z_in * cos_beta - scale * sin_beta*cos_alpha
z = max(-1, min(1, z))
return np.arccos(z), np.arctan2(y, x)
def new_tau(size=1) -> np.ndarray:
return rng.exponential(tau_i, size=size)
2024-06-19 17:10:49 +00:00
reduction_factor = np.zeros((len(tau), len(t_echo)))
for (n, tau_i) in enumerate(tau):
2024-06-12 17:34:45 +00:00
print(f'\nStart for tau={tau_i}')
timesignal = np.zeros((acq_length, len(t_echo)))
start = time()
expected_jumps = round(t_max/tau_i)
if expected_jumps > 1e7:
print(f'Too many jumps to process, Skip {tau_i}s')
continue
chunks = int(0.6 * t_max / tau_i) + 1
print(f'Chunk size for trajectories: {chunks}')
for i in range(num_traj):
# draw orientation
z_theta, z_phi, z_alpha = rng.random(3)
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
alpha = 2 * np.pi * z_alpha
# orientation in cartesian coordinates
x_start = np.sin(theta) * np.cos(phi)
y_start = np.sin(theta) * np.sin(phi)
z_start = np.cos(theta)
# calculate orientation of tetrahedral edges and their frequencies
orientation = np.zeros(4)
orientation[0] = omega_q(delta, eta, theta, phi)
orientation[1] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha))
orientation[2] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 2 * np.pi / 3))
orientation[3] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 4 * np.pi / 3))
t_passed = 0
t = [0]
phase = [0]
accumulated_phase = 0
start_position = rng.choice([0, 1, 2, 3])
while t_passed < t_max:
# orientation until the next jump
jumps = rng.choice([1, 2, 3], size=chunks) + start_position
jumps = np.cumsum(jumps)
jumps %= 4
current_omega = orientation[jumps]
# current_omega = rng.choice(orientation, size=chunks)
# time to next jump
t_wait = new_tau(size=chunks)
accumulated_phase = np.cumsum(t_wait*current_omega) + phase[-1]
t_wait = np.cumsum(t_wait) + t_passed
t_passed = t_wait[-1]
t.extend(t_wait.tolist())
phase.extend(accumulated_phase.tolist())
# convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase)
for j, t_echo_j in enumerate(t_echo):
# effect of de-phasing and re-phasing
start_amp = -2 * phase_interpol(t_echo_j)
# start of actual acquisition
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
2024-06-19 17:10:49 +00:00
reduction_factor[n, j] += np.cos(phase_interpol(2*t_echo_j) + start_amp)
2024-06-12 17:34:45 +00:00
if (i+1) % 200 == 0:
elapsed = time()-start
print(f'Step {i+1} of {num_traj}', end=' - ')
total = num_traj * elapsed / (i+1)
print(f'elapsed: {elapsed:.2f}s - total: {total:.2f}s - remaining: {total-elapsed:.2f}s')
timesignal /= num_traj
# FT to spectrum
freq = np.fft.fftshift(np.fft.fftfreq(acq_length, dt))
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0]
# spec /= np.max(spec, axis=0)
t_echo_strings = list(map(str, t_echo))
# plot spectra
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'tau = {tau_i}s')
ax.legend(lines, t_echo_strings)
# plt.savefig(f'{tau_i}.png')
# save time signals and spectra
# np.savetxt(f'spectrum_{tau_i}.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
# np.savetxt(f'timesignal_{tau_i}.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
2024-06-19 17:10:49 +00:00
fig2, ax2 = plt.subplots()
ax2.semilogx(tau, reduction_factor / num_traj, 'o--')
plt.show()