python/src/rwsims/motions.py

158 lines
4.3 KiB
Python
Raw Normal View History

2024-06-19 17:10:49 +00:00
from __future__ import annotations
2024-06-20 17:19:55 +00:00
from abc import ABC, abstractmethod
2024-06-19 17:10:49 +00:00
import numpy as np
from numpy.random import Generator
from numpy.typing import ArrayLike
2024-06-20 17:19:55 +00:00
class BaseMotion(ABC):
def __init__(self, delta: float, eta: float, rng: Generator):
self._delta = delta
self._eta = eta
2024-06-19 17:10:49 +00:00
2024-06-20 17:19:55 +00:00
self._rng = rng
2024-06-19 17:10:49 +00:00
2024-06-20 17:19:55 +00:00
@abstractmethod
def __repr__(self):
pass
2024-06-19 17:10:49 +00:00
2024-06-30 10:06:44 +00:00
@property
def name(self) -> str:
return self.__class__.__name__
2024-06-20 17:19:55 +00:00
def start(self):
pass
2024-06-19 17:10:49 +00:00
2024-06-20 17:19:55 +00:00
@abstractmethod
def jump(self, size: int = 1) -> ArrayLike:
pass
2024-06-19 17:10:49 +00:00
2024-06-20 17:19:55 +00:00
class RandomJump(BaseMotion):
2024-06-19 17:10:49 +00:00
def __repr__(self):
return 'Random Jump'
def jump(self, size: int = 1) -> ArrayLike:
2024-06-20 17:19:55 +00:00
return omega_q(self._delta, self._eta, *draw_orientation(self._rng, size=size))
class TetrahedralJump(BaseMotion):
def __init__(self, delta: float, eta: float, rng: Generator):
super().__init__(delta, eta, rng)
self._orientation = None
self._start = None
def __repr__(self):
return 'Tetrahedral Jump'
def start(self):
self._orientation = self._make_tetrahedron()
self._start = self._rng.choice([0, 1, 2, 3])
def _make_tetrahedron(self) -> np.ndarray:
beta = np.arccos(-1/3) # tetrahedral angle 109.5 degrees
sin_beta = np.sin(beta)
cos_beta = np.cos(beta)
# corners of a tetrahedron
alpha = 2 * np.pi * self._rng.random()
corners = np.array([
[0, 0, 1],
[sin_beta * np.cos(alpha), sin_beta * np.sin(alpha), cos_beta],
[sin_beta * np.cos(alpha+2*np.pi/3), sin_beta * np.sin(alpha+2*np.pi/3), cos_beta],
[sin_beta * np.cos(alpha+4*np.pi/3), sin_beta * np.sin(alpha+4*np.pi/3), cos_beta]
])
# orientation in lab system
2024-06-30 10:06:44 +00:00
cos_theta0, phi0 = draw_orientation(self._rng)
2024-06-20 17:19:55 +00:00
rot = get_rotation_matrix(
corners[0],
2024-06-30 10:06:44 +00:00
np.array(spherical_to_xyz(1., np.arccos(cos_theta0), phi0)),
2024-06-20 17:19:55 +00:00
)
orientations = np.zeros(4)
for i in range(4):
corner_lab = np.dot(rot, corners[i])
_, theta_i, phi_i = xyz_to_spherical(*corner_lab)
orientations[i] = omega_q(self._delta, self._eta, theta_i, phi_i)
return orientations
def jump(self, size: int = 1) -> ArrayLike:
jumps = self._rng.choice([1, 2, 3], size=size)
jumps = np.cumsum(jumps) + self._start
jumps %= 4
self._start = jumps[-1]
return self._orientation[jumps]
2024-06-30 10:06:44 +00:00
# Helper functions
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
r = np.linalg.norm([x_in, y_in, z_in])
theta = np.arccos(z_in)
phi = np.arctan2(y_in, x_in)
return r, theta, phi
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
sin_theta = np.sin(theta)
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
rotation = np.eye(3)
# rotation by angle around given axis
cos_angle = np.dot(vec_in, vec_out)
# check for parallel / anti-parallel vectors
if cos_angle == 1:
return rotation
elif cos_angle == -1:
return -rotation
else:
axis = np.cross(vec_in, vec_out)
scale = np.linalg.norm(axis)
axis /= scale
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
v_cross = np.array([
[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0],
])
rotation += sin_angle * v_cross
rotation += (1-cos_angle) * v_cross @ v_cross
return rotation
def omega_q(delta: float, eta: float, cos_theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
# sin_theta = np.sin(cos_theta)
# cos_theta = np.cos(cos_theta)
sin_theta_sq = 1 - cos_theta**2
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta_sq * np.cos(2*phi))
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
if size is not None:
z_theta, z_phi = rng.random((2, size))
else:
z_theta, z_phi = rng.random(2)
cos_theta = 1 - 2 * z_theta
phi = 2 * np.pi * z_phi
return cos_theta, phi