python/src/rwsims/parameter.py

118 lines
2.7 KiB
Python
Raw Normal View History

2024-06-19 17:10:49 +00:00
from __future__ import annotations
from dataclasses import dataclass, field
from itertools import product
2024-06-20 17:19:55 +00:00
from math import prod
2024-06-19 17:10:49 +00:00
from typing import Any
import numpy as np
2024-06-20 17:19:55 +00:00
from .distributions import BaseDistribution
from .motions import BaseMotion
2024-06-19 17:10:49 +00:00
2024-06-20 17:19:55 +00:00
__all__ = [
'SimParameter',
'MoleculeParameter',
'StimEchoParameter',
'SpectrumParameter',
'DistParameter',
'MotionParameter',
'Parameter',
]
2024-06-19 17:10:49 +00:00
@dataclass
class SimParameter:
seed: int | None
num_walker: int
t_max: float
@dataclass
class MoleculeParameter:
delta: float
eta: float
@dataclass
class StimEchoParameter:
t_evo: np.ndarray
t_mix: np.ndarray
2024-06-20 17:19:55 +00:00
t_echo: float
2024-06-19 17:10:49 +00:00
t_max: float = field(init=False)
def __post_init__(self):
2024-06-20 17:19:55 +00:00
self.t_max = np.max(self.t_mix) + 2 * np.max(self.t_evo) + 2*self.t_echo
2024-06-19 17:10:49 +00:00
@dataclass
class SpectrumParameter:
dwell_time: float
num_points: int
t_echo: np.ndarray
t_acq: np.ndarray = field(init=False)
t_max: float = field(init=False)
lb: float
dampening: np.ndarray = field(init=False)
def __post_init__(self):
self.t_acq = np.arange(self.num_points) * self.dwell_time
self.dampening = np.exp(-self.lb * self.t_acq)
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
@dataclass
class DistParameter:
2024-06-20 17:19:55 +00:00
dist_type: BaseDistribution
2024-06-19 17:10:49 +00:00
variables: field(default_factory=dict)
num_variables: int = 0
iter: field(init=False) = None
def __post_init__(self):
2024-06-20 17:19:55 +00:00
self.num_variables = prod(map(len, self.variables.values()))
2024-06-19 17:10:49 +00:00
def __iter__(self):
return self
def __next__(self) -> dict[str, Any]:
if self.iter is None:
self.iter = product(*self.variables.values())
try:
return dict(zip(self.variables.keys(), next(self.iter)))
except StopIteration:
self.iter = None
raise StopIteration
@dataclass
class MotionParameter:
2024-06-20 17:19:55 +00:00
model: BaseMotion
2024-06-19 17:10:49 +00:00
variables: field(default_factory=dict)
num_variables: int = 0
iter: field(init=False) = None
def __post_init__(self):
2024-06-20 17:19:55 +00:00
self.num_variables = prod(map(len, self.variables.values()))
2024-06-19 17:10:49 +00:00
def __iter__(self):
return self
def __next__(self) -> dict[str, Any]:
if self.iter is None:
self.iter = product(*self.variables.values())
try:
return dict(zip(self.variables.keys(), next(self.iter)))
except StopIteration:
self.iter = None
raise StopIteration
@dataclass
class Parameter:
ste: StimEchoParameter | None
spec: SpectrumParameter | None
sim: SimParameter
dist: DistParameter
motion: MotionParameter
molecule: MoleculeParameter