tried stuff

This commit is contained in:
Dominik Demuth 2024-06-30 12:06:44 +02:00
parent 82acade7d5
commit 5c95b31053
11 changed files with 245 additions and 168 deletions

View File

@ -1,34 +1,36 @@
{ {
"simulation": { "simulation": {
"num_walker": 5000, "num_walker": 20,
"seed": null "seed": null
}, },
"molecule": { "molecule": {
"delta": 161e3, "delta": 161e3,
"eta": 0.0 "eta": 0.1
}, },
"correlation_times": { "correlation_times": {
"distribution": "LogGaussian", "distribution": "DeltaDistribution",
"tau": { "tau": {
"start": 1e-4, "list": [1e2, 1e0]
"stop": 1e-8,
"steps": 9,
"is_log": true
},
"sigma": {
"list": [0.5, 1, 2]
} }
}, },
"motion": { "motion": {
"model": "TetrahedralJump" "model": "RandomJump"
}, },
"spectrum": { "spectrum": {
"dwell_time": 1e-6, "dwell_time": 1e-6,
"num_points": 4096, "num_points": 4096,
"t_echo": { "t_echo": {
"list": [5e-6, 10e-6, 20e-6, 40e-6, 60e-6, 100e-6] "list": [
5e-6,
10e-6,
20e-6,
40e-6,
60e-6,
100e-6
]
}, },
"line_broadening": 2e3 "line_broadening": 4e3,
"t_pulse": 2e-6
}, },
"stimulated_echo": { "stimulated_echo": {
"t_evo": { "t_evo": {

View File

@ -1,30 +0,0 @@
{
"simulation": {
"num_walker": 20000,
"seed": null
},
"molecule": {
"delta": 161e3,
"eta": 0.0
},
"correlation_times": {
"distribution": "DeltaDistribution",
"tau": 1e-2
},
"motion": {
"model": "RandomJump"
},
"stimulated_echo": {
"t_evo": {
"start": 1e-6,
"stop": 40e-6,
"steps": 80
},
"t_mix": {
"start": 1e-5,
"stop": 1e0,
"steps": 21,
"is_log": true
}
}
}

View File

@ -12,7 +12,11 @@ class BaseDistribution(ABC):
self._tau = tau self._tau = tau
self._rng = rng self._rng = rng
self._tau_jump = tau self.tau_jump = tau
@property
def name(self) -> str:
return self.__class__.__name__
@abstractmethod @abstractmethod
def __repr__(self): def __repr__(self):
@ -28,16 +32,16 @@ class BaseDistribution(ABC):
pass pass
def wait(self, size: int = 1) -> ArrayLike: def wait(self, size: int = 1) -> ArrayLike:
return self._rng.exponential(self._tau_jump, size=size) return self._rng.exponential(self.tau_jump, size=size)
class DeltaDistribution(BaseDistribution): class DeltaDistribution(BaseDistribution):
def __repr__(self): def __repr__(self):
return f'No distribution(tau={self._tau})' return f'Delta Distribution (tau={self._tau})'
def start(self): def start(self):
self._tau_jump = self._tau self.tau_jump = self._tau
@property @property
def mean_tau(self): def mean_tau(self):
@ -54,7 +58,7 @@ class LogGaussianDistribution(BaseDistribution):
return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})' return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})'
def start(self): def start(self):
self._tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma) self.tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
@property @property
def mean_tau(self): def mean_tau(self):

22
src/rwsims/functions.py Normal file
View File

@ -0,0 +1,22 @@
from __future__ import annotations
import numpy as np
from numpy.typing import ArrayLike
from distributions import BaseDistribution
from motions import BaseMotion
def ste(x, a, f_infty, tau, beta):
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
def pulse_attn(freq: ArrayLike, t_pulse: float) -> ArrayLike:
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
pi_half_squared = np.pi**2 / 4
omega = 2 * np.pi * freq
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
return np.pi * numerator/denominator / 2

View File

@ -1,65 +0,0 @@
from __future__ import annotations
import numpy as np
from numpy.typing import ArrayLike
from numpy.random import Generator
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
r = np.linalg.norm([x_in, y_in, z_in])
theta = np.arccos(z_in)
phi = np.arctan2(y_in, x_in)
return r, theta, phi
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
sin_theta = np.sin(theta)
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
rotation = np.eye(3)
# rotation by angle around given axis
cos_angle = np.dot(vec_in, vec_out)
# check for parallel / anti-parallel vectors
if cos_angle == 1:
return rotation
elif cos_angle == -1:
return -rotation
else:
axis = np.cross(vec_in, vec_out)
scale = np.linalg.norm(axis)
axis /= scale
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
v_cross = np.array([
[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0],
])
rotation += sin_angle * v_cross
rotation += (1-cos_angle) * v_cross @ v_cross
return rotation
def omega_q(delta: float, eta: float, theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta**2 * np.cos(2*phi))
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
if size is not None:
z_theta, z_phi = rng.random((2, size))
else:
z_theta, z_phi = rng.random(2)
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
return theta, phi

View File

@ -6,8 +6,6 @@ import numpy as np
from numpy.random import Generator from numpy.random import Generator
from numpy.typing import ArrayLike from numpy.typing import ArrayLike
from .helper import xyz_to_spherical, spherical_to_xyz, omega_q, draw_orientation, get_rotation_matrix
class BaseMotion(ABC): class BaseMotion(ABC):
def __init__(self, delta: float, eta: float, rng: Generator): def __init__(self, delta: float, eta: float, rng: Generator):
@ -20,6 +18,10 @@ class BaseMotion(ABC):
def __repr__(self): def __repr__(self):
pass pass
@property
def name(self) -> str:
return self.__class__.__name__
def start(self): def start(self):
pass pass
@ -66,11 +68,11 @@ class TetrahedralJump(BaseMotion):
]) ])
# orientation in lab system # orientation in lab system
theta0, phi0 = draw_orientation(self._rng) cos_theta0, phi0 = draw_orientation(self._rng)
rot = get_rotation_matrix( rot = get_rotation_matrix(
corners[0], corners[0],
np.array(spherical_to_xyz(1., theta0, phi0)), np.array(spherical_to_xyz(1., np.arccos(cos_theta0), phi0)),
) )
orientations = np.zeros(4) orientations = np.zeros(4)
for i in range(4): for i in range(4):
@ -90,3 +92,66 @@ class TetrahedralJump(BaseMotion):
return self._orientation[jumps] return self._orientation[jumps]
# Helper functions
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
r = np.linalg.norm([x_in, y_in, z_in])
theta = np.arccos(z_in)
phi = np.arctan2(y_in, x_in)
return r, theta, phi
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
sin_theta = np.sin(theta)
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
rotation = np.eye(3)
# rotation by angle around given axis
cos_angle = np.dot(vec_in, vec_out)
# check for parallel / anti-parallel vectors
if cos_angle == 1:
return rotation
elif cos_angle == -1:
return -rotation
else:
axis = np.cross(vec_in, vec_out)
scale = np.linalg.norm(axis)
axis /= scale
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
v_cross = np.array([
[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0],
])
rotation += sin_angle * v_cross
rotation += (1-cos_angle) * v_cross @ v_cross
return rotation
def omega_q(delta: float, eta: float, cos_theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
# sin_theta = np.sin(cos_theta)
# cos_theta = np.cos(cos_theta)
sin_theta_sq = 1 - cos_theta**2
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta_sq * np.cos(2*phi))
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
if size is not None:
z_theta, z_phi = rng.random((2, size))
else:
z_theta, z_phi = rng.random(2)
cos_theta = 1 - 2 * z_theta
phi = 2 * np.pi * z_phi
return cos_theta, phi

View File

@ -6,7 +6,9 @@ from math import prod
from typing import Any from typing import Any
import numpy as np import numpy as np
from numpy._typing import ArrayLike
from functions import pulse_attn
from .distributions import BaseDistribution from .distributions import BaseDistribution
from .motions import BaseMotion from .motions import BaseMotion
@ -27,6 +29,9 @@ class SimParameter:
num_walker: int num_walker: int
t_max: float t_max: float
def totext(self) -> str:
return f'num_traj={self.num_walker}\nseed={self.seed}'
@dataclass @dataclass
class MoleculeParameter: class MoleculeParameter:
@ -36,8 +41,8 @@ class MoleculeParameter:
@dataclass @dataclass
class StimEchoParameter: class StimEchoParameter:
t_evo: np.ndarray t_evo: ArrayLike
t_mix: np.ndarray t_mix: ArrayLike
t_echo: float t_echo: float
t_max: float = field(init=False) t_max: float = field(init=False)
@ -49,16 +54,28 @@ class StimEchoParameter:
class SpectrumParameter: class SpectrumParameter:
dwell_time: float dwell_time: float
num_points: int num_points: int
t_echo: np.ndarray t_echo: ArrayLike
t_acq: np.ndarray = field(init=False)
t_max: float = field(init=False)
lb: float lb: float
dampening: np.ndarray = field(init=False) t_pulse: float
t_acq: ArrayLike = field(init=False)
freq: ArrayLike = field(init=False)
t_max: float = field(init=False)
dampening: ArrayLike = field(init=False)
pulse_attn: ArrayLike = field(init=False)
def __post_init__(self): def __post_init__(self):
self.t_acq = np.arange(self.num_points) * self.dwell_time self.t_acq = np.arange(self.num_points) * self.dwell_time
self.dampening = np.exp(-self.lb * self.t_acq) self.dampening = np.exp(-self.lb * self.t_acq)
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo) self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
self.freq = np.fft.fftshift(np.fft.fftfreq(self.num_points, self.dwell_time))
self.pulse_attn = pulse_attn(self.freq, self.t_pulse)
def totext(self) -> str:
return (f'dwell_time{self.dwell_time}\n'
f'num_points={self.num_points}\n'
f't_echo={self.t_echo}\n'
f'lb={self.lb}\n'
f't_pulse={self.t_pulse}')
@dataclass @dataclass
@ -115,3 +132,14 @@ class Parameter:
dist: DistParameter dist: DistParameter
motion: MotionParameter motion: MotionParameter
molecule: MoleculeParameter molecule: MoleculeParameter
def totext(self, sim: bool = True, spec: bool = True) -> str:
text = []
if sim:
text.append(self.sim.totext())
if spec:
text.append(self.spec.totext())
return '\n'.join(text)

View File

@ -66,7 +66,8 @@ def _parse_spectrum(params: dict[str, Any] | None) -> SpectrumParameter | None:
num_points=params['num_points'], num_points=params['num_points'],
dwell_time=params['dwell_time'], dwell_time=params['dwell_time'],
t_echo=_make_times(params['t_echo']), t_echo=_make_times(params['t_echo']),
lb=params['line_broadening'] lb=params.get('line_broadening', 0),
t_pulse=params.get('t_pulse', 0)
) )
return spec return spec

View File

@ -1,13 +1,15 @@
from __future__ import annotations from __future__ import annotations
from time import time from time import perf_counter
import numpy as np import numpy as np
from numpy.random import Generator from numpy.random import Generator
from datetime import datetime
from scipy.interpolate import interp1d from scipy.interpolate import interp1d
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
from .functions import ste
from .parameter import Parameter from .parameter import Parameter
from .distributions import BaseDistribution from .distributions import BaseDistribution
from .motions import BaseMotion from .motions import BaseMotion
@ -31,32 +33,31 @@ def run_ste_sim(config_file: str):
for (i, dist_values) in enumerate(p.dist): for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable # noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng) dist = p.dist.dist_type(**dist_values, rng=rng)
chunks = int(0.6 * t_max / dist_values.get('tau', 1)) + 1
# second loop over parameter of motional model # second loop over parameter of motion model
for (j, motion_values) in enumerate(p.motion): for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable # noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng) motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'\nStart of {dist} and {motion}') print(f'\nStart of {dist}, {motion}')
start = time() start = last_print = perf_counter()
cc = np.zeros((len(t_mix), len(t_evo))) cc = np.zeros((len(t_mix), len(t_evo)))
ss = np.zeros((len(t_mix), len(t_evo))) ss = np.zeros((len(t_mix), len(t_evo)))
# inner loop to create trajectories # inner loop to create trajectories
for n in range(num_traj): for n in range(num_traj):
phase = make_trajectory(chunks, dist, motion, t_max) phase = make_trajectory(dist, motion, t_max)
for (k, t_evo_k) in enumerate(t_evo): for (k, t_evo_k) in enumerate(t_evo):
dephased = phase(t_evo_k) dephased = phase(t_evo_k)
t0= t_mix + t_evo_k t0 = t_mix + t_evo_k
rephased = phase(t0 + t_evo_k + 2*t_echo) + phase(t0) - 2 * phase(t0+t_echo) rephased = phase(t0 + t_evo_k + 2*t_echo) + phase(t0) - 2 * phase(t0+t_echo)
cc[:, k] += np.cos(dephased)*np.cos(rephased) cc[:, k] += np.cos(dephased)*np.cos(rephased)
ss[:, k] += np.sin(dephased)*np.sin(rephased) ss[:, k] += np.sin(dephased)*np.sin(rephased)
print_step(n, num_traj, start) last_print = print_step(n, num_traj, start, last_print)
cc[:, 1:] /= num_traj cc[:, 1:] /= num_traj
ss[:, 1:] /= num_traj ss[:, 1:] /= num_traj
@ -101,11 +102,9 @@ def run_spectrum_sim(config_file: str):
p = parse(config_file) p = parse(config_file)
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p) rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
print(num_traj)
num_echos = len(p.spec.t_echo) num_echos = len(p.spec.t_echo)
reduction_factor = np.zeros((num_variables, num_echos)) reduction_factor = np.zeros((num_variables, num_echos))
freq = np.fft.fftshift(np.fft.fftfreq(p.spec.num_points, p.spec.dwell_time))
t_echo = p.spec.t_echo t_echo = p.spec.t_echo
t_echo_strings = list(map(str, t_echo)) t_echo_strings = list(map(str, t_echo))
@ -113,23 +112,20 @@ def run_spectrum_sim(config_file: str):
for (i, dist_values) in enumerate(p.dist): for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable # noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng) dist = p.dist.dist_type(**dist_values, rng=rng)
print(f'\nStart of {dist}') # second loop over parameter of motion model
chunks = int(0.6 * t_max / dist.mean_tau) + 1
# second loop over parameter of motional model
for (j, motion_values) in enumerate(p.motion): for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable # noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng) motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'Start of {motion}') print(f'\nStart of {dist}, {motion}')
timesignal = np.zeros((p.spec.num_points, num_echos)) timesignal = np.zeros((p.spec.num_points, num_echos))
start = time() start = perf_counter()
last_print = start
# inner loop to create trajectories # inner loop to create trajectories
for n in range(num_traj): for n in range(num_traj):
phase = make_trajectory(chunks, dist, motion, t_max) phase = make_trajectory(dist, motion, t_max)
for (k, t_echo_k) in enumerate(t_echo): for (k, t_echo_k) in enumerate(t_echo):
# effect of de-phasing and re-phasing # effect of de-phasing and re-phasing
@ -139,59 +135,61 @@ def run_spectrum_sim(config_file: str):
timesignal[:, k] += np.cos(start_amp + phase(p.spec.t_acq + 2*t_echo_k)) timesignal[:, k] += np.cos(start_amp + phase(p.spec.t_acq + 2*t_echo_k))
reduction_factor[max(p.motion.num_variables, 1)*i+j, k] += np.cos(phase(2*t_echo_k) + start_amp) reduction_factor[max(p.motion.num_variables, 1)*i+j, k] += np.cos(phase(2*t_echo_k) + start_amp)
print_step(n, num_traj, start) # print(n+1, num_traj, start, last_print)
last_print = print_step(n+1, num_traj, start, last_print)
# apply line broadening
timesignal *= p.spec.dampening[:, None] timesignal *= p.spec.dampening[:, None]
timesignal /= num_traj timesignal /= num_traj
timesignal[0, :] /= 2
# FT to spectrum # FT to spectrum
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0] spec -= spec[0]
spec *= p.spec.pulse_attn[:, None]
# plot spectra save_spectrum_data(timesignal, spec, p, dist, motion, t_echo_strings)
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'{dist}, {motion}')
ax.legend(lines, t_echo_strings)
plt.show()
fig2, ax2 = plt.subplots() fig2, ax2 = plt.subplots()
ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--') lines = ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
ax2.legend(lines, t_echo_strings)
plt.savefig(f'{dist.name}_{motion.name}_reduction.png')
plt.show() plt.show()
def print_step(n, num_traj, start): def make_trajectory(
n_1 = n+1 dist: BaseDistribution,
if n_1 % 200 == 0 or n_1 == num_traj: motion: BaseMotion,
elapsed = time() - start t_max: float,
print(f'Step {n_1} of {num_traj}', end=' - ') t_passed: float = 0.,
total = num_traj * elapsed / (n_1) init_phase: float = 0.
print(f'total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s') ):
# set initial orientations and correlation times
def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_max: float):
motion.start() motion.start()
dist.start() dist.start()
t_passed = 0 # number of jumps that are simulated at once
t = [0] chunks = min(int(0.51 * t_max / dist.tau_jump), 100_000) + 1
phase = [0]
t = [np.array([t_passed])]
phase = [np.array([init_phase])]
while t_passed < t_max: while t_passed < t_max:
# frequencies between jumps # frequencies between jumps
current_omega = motion.jump(size=chunks) current_omega = motion.jump(size=chunks)
# times at a particular position # times at a particular position
t_wait = dist.wait(size=chunks) t_wait = dist.wait(size=chunks)
accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1] accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1]
phase.append(accumulated_phase)
t_wait = np.cumsum(t_wait) + t_passed t_wait = np.cumsum(t_wait) + t_passed
t_passed = t_wait[-1] t_passed = t_wait[-1]
t.extend(t_wait.tolist()) t.append(t_wait)
phase.extend(accumulated_phase.tolist()) t = np.concatenate(t)
phase = np.concatenate(phase)
# convenient interpolation to get phase at arbitrary times # convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase) phase_interpol = interp1d(t, phase)
@ -200,6 +198,8 @@ def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_m
def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]: def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]:
# collect variables that are common to spectra and stimulated echo
# random number generator # random number generator
rng = np.random.default_rng(parameter.sim.seed) rng = np.random.default_rng(parameter.sim.seed)
@ -217,6 +217,56 @@ def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, fl
return rng, num_traj, t_max, delta, eta, num_variables return rng, num_traj, t_max, delta, eta, num_variables
def ste(x, a, f_infty, tau, beta): def print_step(n: int, num_traj: int, start: float, last_print: float) -> float:
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty) step_time = perf_counter()
dt = step_time - last_print
if dt > 10 or n == num_traj:
date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f'{date} - step {n} of {num_traj}', end=' - ')
elapsed = step_time - start
total = num_traj * elapsed / n
print(f'expected total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
if dt > 10:
last_print = step_time
return last_print
def make_filename(dist: BaseDistribution, motion: BaseMotion) -> str:
filename = f'{dist}_{motion}'
filename = filename.replace(' ', '_')
filename = filename.replace('.', 'p')
return filename
def save_spectrum_data(
timesignal: np.ndarray,
spectrum: np.ndarray,
param: Parameter,
dist: BaseDistribution,
motion: BaseMotion,
echo_strings: list[str]
):
filename = make_filename(dist, motion)
header = param.totext(sim=True, spec=True)
header += '\nx\t' + '\t'.join(echo_strings)
np.savetxt(filename + '_timesignal.dat', np.c_[param.spec.t_acq, timesignal], header=header)
np.savetxt(filename + '_spectrum.dat', np.c_[param.spec.freq, spectrum], header=header)
fig, ax = plt.subplots()
lines = ax.plot(param.spec.freq, spectrum)
ax.set_title(f'{dist}, {motion}')
ax.legend(lines, echo_strings)
plt.savefig(filename + '_spectrum.png')
fig1, ax1 = plt.subplots()
lines = ax1.plot(param.spec.t_acq, timesignal)
ax1.set_title(f'{dist}, {motion}')
ax1.legend(lines, echo_strings)
plt.savefig(filename + '_timesignal.png')
plt.show()

0
src/rwsims/spectrum.py Normal file
View File

0
src/rwsims/ste.py Normal file
View File