tried stuff
This commit is contained in:
parent
82acade7d5
commit
5c95b31053
@ -1,34 +1,36 @@
|
||||
{
|
||||
"simulation": {
|
||||
"num_walker": 5000,
|
||||
"num_walker": 20,
|
||||
"seed": null
|
||||
},
|
||||
"molecule": {
|
||||
"delta": 161e3,
|
||||
"eta": 0.0
|
||||
"eta": 0.1
|
||||
},
|
||||
"correlation_times": {
|
||||
"distribution": "LogGaussian",
|
||||
"distribution": "DeltaDistribution",
|
||||
"tau": {
|
||||
"start": 1e-4,
|
||||
"stop": 1e-8,
|
||||
"steps": 9,
|
||||
"is_log": true
|
||||
},
|
||||
"sigma": {
|
||||
"list": [0.5, 1, 2]
|
||||
"list": [1e2, 1e0]
|
||||
}
|
||||
},
|
||||
"motion": {
|
||||
"model": "TetrahedralJump"
|
||||
"model": "RandomJump"
|
||||
},
|
||||
"spectrum": {
|
||||
"dwell_time": 1e-6,
|
||||
"num_points": 4096,
|
||||
"t_echo": {
|
||||
"list": [5e-6, 10e-6, 20e-6, 40e-6, 60e-6, 100e-6]
|
||||
"list": [
|
||||
5e-6,
|
||||
10e-6,
|
||||
20e-6,
|
||||
40e-6,
|
||||
60e-6,
|
||||
100e-6
|
||||
]
|
||||
},
|
||||
"line_broadening": 2e3
|
||||
"line_broadening": 4e3,
|
||||
"t_pulse": 2e-6
|
||||
},
|
||||
"stimulated_echo": {
|
||||
"t_evo": {
|
||||
|
@ -1,30 +0,0 @@
|
||||
{
|
||||
"simulation": {
|
||||
"num_walker": 20000,
|
||||
"seed": null
|
||||
},
|
||||
"molecule": {
|
||||
"delta": 161e3,
|
||||
"eta": 0.0
|
||||
},
|
||||
"correlation_times": {
|
||||
"distribution": "DeltaDistribution",
|
||||
"tau": 1e-2
|
||||
},
|
||||
"motion": {
|
||||
"model": "RandomJump"
|
||||
},
|
||||
"stimulated_echo": {
|
||||
"t_evo": {
|
||||
"start": 1e-6,
|
||||
"stop": 40e-6,
|
||||
"steps": 80
|
||||
},
|
||||
"t_mix": {
|
||||
"start": 1e-5,
|
||||
"stop": 1e0,
|
||||
"steps": 21,
|
||||
"is_log": true
|
||||
}
|
||||
}
|
||||
}
|
@ -12,7 +12,11 @@ class BaseDistribution(ABC):
|
||||
self._tau = tau
|
||||
self._rng = rng
|
||||
|
||||
self._tau_jump = tau
|
||||
self.tau_jump = tau
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.__class__.__name__
|
||||
|
||||
@abstractmethod
|
||||
def __repr__(self):
|
||||
@ -28,16 +32,16 @@ class BaseDistribution(ABC):
|
||||
pass
|
||||
|
||||
def wait(self, size: int = 1) -> ArrayLike:
|
||||
return self._rng.exponential(self._tau_jump, size=size)
|
||||
return self._rng.exponential(self.tau_jump, size=size)
|
||||
|
||||
|
||||
class DeltaDistribution(BaseDistribution):
|
||||
|
||||
def __repr__(self):
|
||||
return f'No distribution(tau={self._tau})'
|
||||
return f'Delta Distribution (tau={self._tau})'
|
||||
|
||||
def start(self):
|
||||
self._tau_jump = self._tau
|
||||
self.tau_jump = self._tau
|
||||
|
||||
@property
|
||||
def mean_tau(self):
|
||||
@ -54,7 +58,7 @@ class LogGaussianDistribution(BaseDistribution):
|
||||
return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})'
|
||||
|
||||
def start(self):
|
||||
self._tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
|
||||
self.tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
|
||||
|
||||
@property
|
||||
def mean_tau(self):
|
||||
|
22
src/rwsims/functions.py
Normal file
22
src/rwsims/functions.py
Normal file
@ -0,0 +1,22 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from distributions import BaseDistribution
|
||||
from motions import BaseMotion
|
||||
|
||||
|
||||
def ste(x, a, f_infty, tau, beta):
|
||||
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
|
||||
|
||||
|
||||
def pulse_attn(freq: ArrayLike, t_pulse: float) -> ArrayLike:
|
||||
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
|
||||
pi_half_squared = np.pi**2 / 4
|
||||
omega = 2 * np.pi * freq
|
||||
|
||||
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
|
||||
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
|
||||
|
||||
return np.pi * numerator/denominator / 2
|
@ -1,65 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import ArrayLike
|
||||
from numpy.random import Generator
|
||||
|
||||
|
||||
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
|
||||
r = np.linalg.norm([x_in, y_in, z_in])
|
||||
theta = np.arccos(z_in)
|
||||
phi = np.arctan2(y_in, x_in)
|
||||
|
||||
return r, theta, phi
|
||||
|
||||
|
||||
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
|
||||
sin_theta = np.sin(theta)
|
||||
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
|
||||
|
||||
|
||||
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
|
||||
rotation = np.eye(3)
|
||||
|
||||
# rotation by angle around given axis
|
||||
cos_angle = np.dot(vec_in, vec_out)
|
||||
|
||||
# check for parallel / anti-parallel vectors
|
||||
if cos_angle == 1:
|
||||
return rotation
|
||||
elif cos_angle == -1:
|
||||
return -rotation
|
||||
|
||||
else:
|
||||
axis = np.cross(vec_in, vec_out)
|
||||
scale = np.linalg.norm(axis)
|
||||
axis /= scale
|
||||
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
|
||||
|
||||
v_cross = np.array([
|
||||
[0, -axis[2], axis[1]],
|
||||
[axis[2], 0, -axis[0]],
|
||||
[-axis[1], axis[0], 0],
|
||||
])
|
||||
|
||||
rotation += sin_angle * v_cross
|
||||
rotation += (1-cos_angle) * v_cross @ v_cross
|
||||
|
||||
return rotation
|
||||
|
||||
|
||||
def omega_q(delta: float, eta: float, theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
|
||||
cos_theta = np.cos(theta)
|
||||
sin_theta = np.sin(theta)
|
||||
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta**2 * np.cos(2*phi))
|
||||
|
||||
|
||||
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
|
||||
if size is not None:
|
||||
z_theta, z_phi = rng.random((2, size))
|
||||
else:
|
||||
z_theta, z_phi = rng.random(2)
|
||||
theta = np.arccos(1 - 2 * z_theta)
|
||||
phi = 2 * np.pi * z_phi
|
||||
|
||||
return theta, phi
|
@ -6,8 +6,6 @@ import numpy as np
|
||||
from numpy.random import Generator
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
from .helper import xyz_to_spherical, spherical_to_xyz, omega_q, draw_orientation, get_rotation_matrix
|
||||
|
||||
|
||||
class BaseMotion(ABC):
|
||||
def __init__(self, delta: float, eta: float, rng: Generator):
|
||||
@ -20,6 +18,10 @@ class BaseMotion(ABC):
|
||||
def __repr__(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.__class__.__name__
|
||||
|
||||
def start(self):
|
||||
pass
|
||||
|
||||
@ -66,11 +68,11 @@ class TetrahedralJump(BaseMotion):
|
||||
])
|
||||
|
||||
# orientation in lab system
|
||||
theta0, phi0 = draw_orientation(self._rng)
|
||||
cos_theta0, phi0 = draw_orientation(self._rng)
|
||||
|
||||
rot = get_rotation_matrix(
|
||||
corners[0],
|
||||
np.array(spherical_to_xyz(1., theta0, phi0)),
|
||||
np.array(spherical_to_xyz(1., np.arccos(cos_theta0), phi0)),
|
||||
)
|
||||
orientations = np.zeros(4)
|
||||
for i in range(4):
|
||||
@ -90,3 +92,66 @@ class TetrahedralJump(BaseMotion):
|
||||
return self._orientation[jumps]
|
||||
|
||||
|
||||
# Helper functions
|
||||
|
||||
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
|
||||
r = np.linalg.norm([x_in, y_in, z_in])
|
||||
theta = np.arccos(z_in)
|
||||
phi = np.arctan2(y_in, x_in)
|
||||
|
||||
return r, theta, phi
|
||||
|
||||
|
||||
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
|
||||
sin_theta = np.sin(theta)
|
||||
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
|
||||
|
||||
|
||||
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
|
||||
rotation = np.eye(3)
|
||||
|
||||
# rotation by angle around given axis
|
||||
cos_angle = np.dot(vec_in, vec_out)
|
||||
|
||||
# check for parallel / anti-parallel vectors
|
||||
if cos_angle == 1:
|
||||
return rotation
|
||||
elif cos_angle == -1:
|
||||
return -rotation
|
||||
|
||||
else:
|
||||
axis = np.cross(vec_in, vec_out)
|
||||
scale = np.linalg.norm(axis)
|
||||
axis /= scale
|
||||
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
|
||||
|
||||
v_cross = np.array([
|
||||
[0, -axis[2], axis[1]],
|
||||
[axis[2], 0, -axis[0]],
|
||||
[-axis[1], axis[0], 0],
|
||||
])
|
||||
|
||||
rotation += sin_angle * v_cross
|
||||
rotation += (1-cos_angle) * v_cross @ v_cross
|
||||
|
||||
return rotation
|
||||
|
||||
|
||||
def omega_q(delta: float, eta: float, cos_theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
|
||||
# sin_theta = np.sin(cos_theta)
|
||||
# cos_theta = np.cos(cos_theta)
|
||||
sin_theta_sq = 1 - cos_theta**2
|
||||
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta_sq * np.cos(2*phi))
|
||||
|
||||
|
||||
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
|
||||
if size is not None:
|
||||
z_theta, z_phi = rng.random((2, size))
|
||||
else:
|
||||
z_theta, z_phi = rng.random(2)
|
||||
cos_theta = 1 - 2 * z_theta
|
||||
phi = 2 * np.pi * z_phi
|
||||
|
||||
return cos_theta, phi
|
||||
|
||||
|
||||
|
@ -6,7 +6,9 @@ from math import prod
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
from numpy._typing import ArrayLike
|
||||
|
||||
from functions import pulse_attn
|
||||
from .distributions import BaseDistribution
|
||||
from .motions import BaseMotion
|
||||
|
||||
@ -27,6 +29,9 @@ class SimParameter:
|
||||
num_walker: int
|
||||
t_max: float
|
||||
|
||||
def totext(self) -> str:
|
||||
return f'num_traj={self.num_walker}\nseed={self.seed}'
|
||||
|
||||
|
||||
@dataclass
|
||||
class MoleculeParameter:
|
||||
@ -36,8 +41,8 @@ class MoleculeParameter:
|
||||
|
||||
@dataclass
|
||||
class StimEchoParameter:
|
||||
t_evo: np.ndarray
|
||||
t_mix: np.ndarray
|
||||
t_evo: ArrayLike
|
||||
t_mix: ArrayLike
|
||||
t_echo: float
|
||||
t_max: float = field(init=False)
|
||||
|
||||
@ -49,16 +54,28 @@ class StimEchoParameter:
|
||||
class SpectrumParameter:
|
||||
dwell_time: float
|
||||
num_points: int
|
||||
t_echo: np.ndarray
|
||||
t_acq: np.ndarray = field(init=False)
|
||||
t_max: float = field(init=False)
|
||||
t_echo: ArrayLike
|
||||
lb: float
|
||||
dampening: np.ndarray = field(init=False)
|
||||
t_pulse: float
|
||||
t_acq: ArrayLike = field(init=False)
|
||||
freq: ArrayLike = field(init=False)
|
||||
t_max: float = field(init=False)
|
||||
dampening: ArrayLike = field(init=False)
|
||||
pulse_attn: ArrayLike = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.t_acq = np.arange(self.num_points) * self.dwell_time
|
||||
self.dampening = np.exp(-self.lb * self.t_acq)
|
||||
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
|
||||
self.freq = np.fft.fftshift(np.fft.fftfreq(self.num_points, self.dwell_time))
|
||||
self.pulse_attn = pulse_attn(self.freq, self.t_pulse)
|
||||
|
||||
def totext(self) -> str:
|
||||
return (f'dwell_time{self.dwell_time}\n'
|
||||
f'num_points={self.num_points}\n'
|
||||
f't_echo={self.t_echo}\n'
|
||||
f'lb={self.lb}\n'
|
||||
f't_pulse={self.t_pulse}')
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -115,3 +132,14 @@ class Parameter:
|
||||
dist: DistParameter
|
||||
motion: MotionParameter
|
||||
molecule: MoleculeParameter
|
||||
|
||||
def totext(self, sim: bool = True, spec: bool = True) -> str:
|
||||
text = []
|
||||
if sim:
|
||||
text.append(self.sim.totext())
|
||||
|
||||
if spec:
|
||||
text.append(self.spec.totext())
|
||||
|
||||
return '\n'.join(text)
|
||||
|
||||
|
@ -66,7 +66,8 @@ def _parse_spectrum(params: dict[str, Any] | None) -> SpectrumParameter | None:
|
||||
num_points=params['num_points'],
|
||||
dwell_time=params['dwell_time'],
|
||||
t_echo=_make_times(params['t_echo']),
|
||||
lb=params['line_broadening']
|
||||
lb=params.get('line_broadening', 0),
|
||||
t_pulse=params.get('t_pulse', 0)
|
||||
)
|
||||
|
||||
return spec
|
||||
|
@ -1,13 +1,15 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from time import time
|
||||
from time import perf_counter
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import Generator
|
||||
from datetime import datetime
|
||||
from scipy.interpolate import interp1d
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
from .functions import ste
|
||||
from .parameter import Parameter
|
||||
from .distributions import BaseDistribution
|
||||
from .motions import BaseMotion
|
||||
@ -31,23 +33,22 @@ def run_ste_sim(config_file: str):
|
||||
for (i, dist_values) in enumerate(p.dist):
|
||||
# noinspection PyCallingNonCallable
|
||||
dist = p.dist.dist_type(**dist_values, rng=rng)
|
||||
chunks = int(0.6 * t_max / dist_values.get('tau', 1)) + 1
|
||||
|
||||
# second loop over parameter of motional model
|
||||
# second loop over parameter of motion model
|
||||
for (j, motion_values) in enumerate(p.motion):
|
||||
# noinspection PyCallingNonCallable
|
||||
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
|
||||
|
||||
print(f'\nStart of {dist} and {motion}')
|
||||
print(f'\nStart of {dist}, {motion}')
|
||||
|
||||
start = time()
|
||||
start = last_print = perf_counter()
|
||||
|
||||
cc = np.zeros((len(t_mix), len(t_evo)))
|
||||
ss = np.zeros((len(t_mix), len(t_evo)))
|
||||
|
||||
# inner loop to create trajectories
|
||||
for n in range(num_traj):
|
||||
phase = make_trajectory(chunks, dist, motion, t_max)
|
||||
phase = make_trajectory(dist, motion, t_max)
|
||||
|
||||
for (k, t_evo_k) in enumerate(t_evo):
|
||||
dephased = phase(t_evo_k)
|
||||
@ -56,7 +57,7 @@ def run_ste_sim(config_file: str):
|
||||
cc[:, k] += np.cos(dephased)*np.cos(rephased)
|
||||
ss[:, k] += np.sin(dephased)*np.sin(rephased)
|
||||
|
||||
print_step(n, num_traj, start)
|
||||
last_print = print_step(n, num_traj, start, last_print)
|
||||
|
||||
cc[:, 1:] /= num_traj
|
||||
ss[:, 1:] /= num_traj
|
||||
@ -101,11 +102,9 @@ def run_spectrum_sim(config_file: str):
|
||||
p = parse(config_file)
|
||||
|
||||
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
|
||||
print(num_traj)
|
||||
|
||||
num_echos = len(p.spec.t_echo)
|
||||
reduction_factor = np.zeros((num_variables, num_echos))
|
||||
freq = np.fft.fftshift(np.fft.fftfreq(p.spec.num_points, p.spec.dwell_time))
|
||||
t_echo = p.spec.t_echo
|
||||
t_echo_strings = list(map(str, t_echo))
|
||||
|
||||
@ -113,23 +112,20 @@ def run_spectrum_sim(config_file: str):
|
||||
for (i, dist_values) in enumerate(p.dist):
|
||||
# noinspection PyCallingNonCallable
|
||||
dist = p.dist.dist_type(**dist_values, rng=rng)
|
||||
print(f'\nStart of {dist}')
|
||||
|
||||
chunks = int(0.6 * t_max / dist.mean_tau) + 1
|
||||
|
||||
# second loop over parameter of motional model
|
||||
# second loop over parameter of motion model
|
||||
for (j, motion_values) in enumerate(p.motion):
|
||||
# noinspection PyCallingNonCallable
|
||||
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
|
||||
print(f'Start of {motion}')
|
||||
print(f'\nStart of {dist}, {motion}')
|
||||
|
||||
timesignal = np.zeros((p.spec.num_points, num_echos))
|
||||
|
||||
start = time()
|
||||
start = perf_counter()
|
||||
last_print = start
|
||||
|
||||
# inner loop to create trajectories
|
||||
for n in range(num_traj):
|
||||
phase = make_trajectory(chunks, dist, motion, t_max)
|
||||
phase = make_trajectory(dist, motion, t_max)
|
||||
|
||||
for (k, t_echo_k) in enumerate(t_echo):
|
||||
# effect of de-phasing and re-phasing
|
||||
@ -139,59 +135,61 @@ def run_spectrum_sim(config_file: str):
|
||||
timesignal[:, k] += np.cos(start_amp + phase(p.spec.t_acq + 2*t_echo_k))
|
||||
reduction_factor[max(p.motion.num_variables, 1)*i+j, k] += np.cos(phase(2*t_echo_k) + start_amp)
|
||||
|
||||
print_step(n, num_traj, start)
|
||||
# print(n+1, num_traj, start, last_print)
|
||||
last_print = print_step(n+1, num_traj, start, last_print)
|
||||
|
||||
# apply line broadening
|
||||
timesignal *= p.spec.dampening[:, None]
|
||||
timesignal /= num_traj
|
||||
timesignal[0, :] /= 2
|
||||
|
||||
# FT to spectrum
|
||||
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
|
||||
spec -= spec[0]
|
||||
spec *= p.spec.pulse_attn[:, None]
|
||||
|
||||
# plot spectra
|
||||
fig, ax = plt.subplots()
|
||||
lines = ax.plot(freq, spec)
|
||||
ax.set_title(f'{dist}, {motion}')
|
||||
ax.legend(lines, t_echo_strings)
|
||||
|
||||
plt.show()
|
||||
save_spectrum_data(timesignal, spec, p, dist, motion, t_echo_strings)
|
||||
|
||||
fig2, ax2 = plt.subplots()
|
||||
ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
|
||||
lines = ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
|
||||
ax2.legend(lines, t_echo_strings)
|
||||
plt.savefig(f'{dist.name}_{motion.name}_reduction.png')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def print_step(n, num_traj, start):
|
||||
n_1 = n+1
|
||||
if n_1 % 200 == 0 or n_1 == num_traj:
|
||||
elapsed = time() - start
|
||||
print(f'Step {n_1} of {num_traj}', end=' - ')
|
||||
total = num_traj * elapsed / (n_1)
|
||||
print(f'total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
|
||||
def make_trajectory(
|
||||
dist: BaseDistribution,
|
||||
motion: BaseMotion,
|
||||
t_max: float,
|
||||
t_passed: float = 0.,
|
||||
init_phase: float = 0.
|
||||
):
|
||||
|
||||
|
||||
def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_max: float):
|
||||
# set initial orientations and correlation times
|
||||
motion.start()
|
||||
dist.start()
|
||||
|
||||
t_passed = 0
|
||||
t = [0]
|
||||
phase = [0]
|
||||
# number of jumps that are simulated at once
|
||||
chunks = min(int(0.51 * t_max / dist.tau_jump), 100_000) + 1
|
||||
|
||||
t = [np.array([t_passed])]
|
||||
phase = [np.array([init_phase])]
|
||||
while t_passed < t_max:
|
||||
# frequencies between jumps
|
||||
current_omega = motion.jump(size=chunks)
|
||||
|
||||
# times at a particular position
|
||||
t_wait = dist.wait(size=chunks)
|
||||
|
||||
accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1]
|
||||
phase.append(accumulated_phase)
|
||||
|
||||
t_wait = np.cumsum(t_wait) + t_passed
|
||||
t_passed = t_wait[-1]
|
||||
t.extend(t_wait.tolist())
|
||||
t.append(t_wait)
|
||||
|
||||
phase.extend(accumulated_phase.tolist())
|
||||
t = np.concatenate(t)
|
||||
phase = np.concatenate(phase)
|
||||
|
||||
# convenient interpolation to get phase at arbitrary times
|
||||
phase_interpol = interp1d(t, phase)
|
||||
@ -200,6 +198,8 @@ def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_m
|
||||
|
||||
|
||||
def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]:
|
||||
# collect variables that are common to spectra and stimulated echo
|
||||
|
||||
# random number generator
|
||||
rng = np.random.default_rng(parameter.sim.seed)
|
||||
|
||||
@ -217,6 +217,56 @@ def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, fl
|
||||
return rng, num_traj, t_max, delta, eta, num_variables
|
||||
|
||||
|
||||
def ste(x, a, f_infty, tau, beta):
|
||||
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
|
||||
def print_step(n: int, num_traj: int, start: float, last_print: float) -> float:
|
||||
step_time = perf_counter()
|
||||
dt = step_time - last_print
|
||||
if dt > 10 or n == num_traj:
|
||||
date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||||
print(f'{date} - step {n} of {num_traj}', end=' - ')
|
||||
|
||||
elapsed = step_time - start
|
||||
total = num_traj * elapsed / n
|
||||
print(f'expected total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
|
||||
if dt > 10:
|
||||
last_print = step_time
|
||||
|
||||
return last_print
|
||||
|
||||
|
||||
def make_filename(dist: BaseDistribution, motion: BaseMotion) -> str:
|
||||
filename = f'{dist}_{motion}'
|
||||
filename = filename.replace(' ', '_')
|
||||
filename = filename.replace('.', 'p')
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
def save_spectrum_data(
|
||||
timesignal: np.ndarray,
|
||||
spectrum: np.ndarray,
|
||||
param: Parameter,
|
||||
dist: BaseDistribution,
|
||||
motion: BaseMotion,
|
||||
echo_strings: list[str]
|
||||
):
|
||||
filename = make_filename(dist, motion)
|
||||
|
||||
header = param.totext(sim=True, spec=True)
|
||||
header += '\nx\t' + '\t'.join(echo_strings)
|
||||
|
||||
np.savetxt(filename + '_timesignal.dat', np.c_[param.spec.t_acq, timesignal], header=header)
|
||||
np.savetxt(filename + '_spectrum.dat', np.c_[param.spec.freq, spectrum], header=header)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
lines = ax.plot(param.spec.freq, spectrum)
|
||||
ax.set_title(f'{dist}, {motion}')
|
||||
ax.legend(lines, echo_strings)
|
||||
plt.savefig(filename + '_spectrum.png')
|
||||
|
||||
fig1, ax1 = plt.subplots()
|
||||
lines = ax1.plot(param.spec.t_acq, timesignal)
|
||||
ax1.set_title(f'{dist}, {motion}')
|
||||
ax1.legend(lines, echo_strings)
|
||||
plt.savefig(filename + '_timesignal.png')
|
||||
|
||||
plt.show()
|
||||
|
0
src/rwsims/spectrum.py
Normal file
0
src/rwsims/spectrum.py
Normal file
0
src/rwsims/ste.py
Normal file
0
src/rwsims/ste.py
Normal file
Loading…
Reference in New Issue
Block a user