tried stuff

This commit is contained in:
Dominik Demuth 2024-06-30 12:06:44 +02:00
parent 82acade7d5
commit 5c95b31053
11 changed files with 245 additions and 168 deletions

View File

@ -1,34 +1,36 @@
{
"simulation": {
"num_walker": 5000,
"num_walker": 20,
"seed": null
},
"molecule": {
"delta": 161e3,
"eta": 0.0
"eta": 0.1
},
"correlation_times": {
"distribution": "LogGaussian",
"distribution": "DeltaDistribution",
"tau": {
"start": 1e-4,
"stop": 1e-8,
"steps": 9,
"is_log": true
},
"sigma": {
"list": [0.5, 1, 2]
"list": [1e2, 1e0]
}
},
"motion": {
"model": "TetrahedralJump"
"model": "RandomJump"
},
"spectrum": {
"dwell_time": 1e-6,
"num_points": 4096,
"t_echo": {
"list": [5e-6, 10e-6, 20e-6, 40e-6, 60e-6, 100e-6]
"list": [
5e-6,
10e-6,
20e-6,
40e-6,
60e-6,
100e-6
]
},
"line_broadening": 2e3
"line_broadening": 4e3,
"t_pulse": 2e-6
},
"stimulated_echo": {
"t_evo": {

View File

@ -1,30 +0,0 @@
{
"simulation": {
"num_walker": 20000,
"seed": null
},
"molecule": {
"delta": 161e3,
"eta": 0.0
},
"correlation_times": {
"distribution": "DeltaDistribution",
"tau": 1e-2
},
"motion": {
"model": "RandomJump"
},
"stimulated_echo": {
"t_evo": {
"start": 1e-6,
"stop": 40e-6,
"steps": 80
},
"t_mix": {
"start": 1e-5,
"stop": 1e0,
"steps": 21,
"is_log": true
}
}
}

View File

@ -12,7 +12,11 @@ class BaseDistribution(ABC):
self._tau = tau
self._rng = rng
self._tau_jump = tau
self.tau_jump = tau
@property
def name(self) -> str:
return self.__class__.__name__
@abstractmethod
def __repr__(self):
@ -28,16 +32,16 @@ class BaseDistribution(ABC):
pass
def wait(self, size: int = 1) -> ArrayLike:
return self._rng.exponential(self._tau_jump, size=size)
return self._rng.exponential(self.tau_jump, size=size)
class DeltaDistribution(BaseDistribution):
def __repr__(self):
return f'No distribution(tau={self._tau})'
return f'Delta Distribution (tau={self._tau})'
def start(self):
self._tau_jump = self._tau
self.tau_jump = self._tau
@property
def mean_tau(self):
@ -54,7 +58,7 @@ class LogGaussianDistribution(BaseDistribution):
return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})'
def start(self):
self._tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
self.tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
@property
def mean_tau(self):

22
src/rwsims/functions.py Normal file
View File

@ -0,0 +1,22 @@
from __future__ import annotations
import numpy as np
from numpy.typing import ArrayLike
from distributions import BaseDistribution
from motions import BaseMotion
def ste(x, a, f_infty, tau, beta):
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
def pulse_attn(freq: ArrayLike, t_pulse: float) -> ArrayLike:
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
pi_half_squared = np.pi**2 / 4
omega = 2 * np.pi * freq
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
return np.pi * numerator/denominator / 2

View File

@ -1,65 +0,0 @@
from __future__ import annotations
import numpy as np
from numpy.typing import ArrayLike
from numpy.random import Generator
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
r = np.linalg.norm([x_in, y_in, z_in])
theta = np.arccos(z_in)
phi = np.arctan2(y_in, x_in)
return r, theta, phi
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
sin_theta = np.sin(theta)
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
rotation = np.eye(3)
# rotation by angle around given axis
cos_angle = np.dot(vec_in, vec_out)
# check for parallel / anti-parallel vectors
if cos_angle == 1:
return rotation
elif cos_angle == -1:
return -rotation
else:
axis = np.cross(vec_in, vec_out)
scale = np.linalg.norm(axis)
axis /= scale
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
v_cross = np.array([
[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0],
])
rotation += sin_angle * v_cross
rotation += (1-cos_angle) * v_cross @ v_cross
return rotation
def omega_q(delta: float, eta: float, theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta**2 * np.cos(2*phi))
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
if size is not None:
z_theta, z_phi = rng.random((2, size))
else:
z_theta, z_phi = rng.random(2)
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
return theta, phi

View File

@ -6,8 +6,6 @@ import numpy as np
from numpy.random import Generator
from numpy.typing import ArrayLike
from .helper import xyz_to_spherical, spherical_to_xyz, omega_q, draw_orientation, get_rotation_matrix
class BaseMotion(ABC):
def __init__(self, delta: float, eta: float, rng: Generator):
@ -20,6 +18,10 @@ class BaseMotion(ABC):
def __repr__(self):
pass
@property
def name(self) -> str:
return self.__class__.__name__
def start(self):
pass
@ -66,11 +68,11 @@ class TetrahedralJump(BaseMotion):
])
# orientation in lab system
theta0, phi0 = draw_orientation(self._rng)
cos_theta0, phi0 = draw_orientation(self._rng)
rot = get_rotation_matrix(
corners[0],
np.array(spherical_to_xyz(1., theta0, phi0)),
np.array(spherical_to_xyz(1., np.arccos(cos_theta0), phi0)),
)
orientations = np.zeros(4)
for i in range(4):
@ -90,3 +92,66 @@ class TetrahedralJump(BaseMotion):
return self._orientation[jumps]
# Helper functions
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[float, float, float]:
r = np.linalg.norm([x_in, y_in, z_in])
theta = np.arccos(z_in)
phi = np.arctan2(y_in, x_in)
return r, theta, phi
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
sin_theta = np.sin(theta)
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
rotation = np.eye(3)
# rotation by angle around given axis
cos_angle = np.dot(vec_in, vec_out)
# check for parallel / anti-parallel vectors
if cos_angle == 1:
return rotation
elif cos_angle == -1:
return -rotation
else:
axis = np.cross(vec_in, vec_out)
scale = np.linalg.norm(axis)
axis /= scale
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
v_cross = np.array([
[0, -axis[2], axis[1]],
[axis[2], 0, -axis[0]],
[-axis[1], axis[0], 0],
])
rotation += sin_angle * v_cross
rotation += (1-cos_angle) * v_cross @ v_cross
return rotation
def omega_q(delta: float, eta: float, cos_theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
# sin_theta = np.sin(cos_theta)
# cos_theta = np.cos(cos_theta)
sin_theta_sq = 1 - cos_theta**2
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta_sq * np.cos(2*phi))
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
if size is not None:
z_theta, z_phi = rng.random((2, size))
else:
z_theta, z_phi = rng.random(2)
cos_theta = 1 - 2 * z_theta
phi = 2 * np.pi * z_phi
return cos_theta, phi

View File

@ -6,7 +6,9 @@ from math import prod
from typing import Any
import numpy as np
from numpy._typing import ArrayLike
from functions import pulse_attn
from .distributions import BaseDistribution
from .motions import BaseMotion
@ -27,6 +29,9 @@ class SimParameter:
num_walker: int
t_max: float
def totext(self) -> str:
return f'num_traj={self.num_walker}\nseed={self.seed}'
@dataclass
class MoleculeParameter:
@ -36,8 +41,8 @@ class MoleculeParameter:
@dataclass
class StimEchoParameter:
t_evo: np.ndarray
t_mix: np.ndarray
t_evo: ArrayLike
t_mix: ArrayLike
t_echo: float
t_max: float = field(init=False)
@ -49,16 +54,28 @@ class StimEchoParameter:
class SpectrumParameter:
dwell_time: float
num_points: int
t_echo: np.ndarray
t_acq: np.ndarray = field(init=False)
t_max: float = field(init=False)
t_echo: ArrayLike
lb: float
dampening: np.ndarray = field(init=False)
t_pulse: float
t_acq: ArrayLike = field(init=False)
freq: ArrayLike = field(init=False)
t_max: float = field(init=False)
dampening: ArrayLike = field(init=False)
pulse_attn: ArrayLike = field(init=False)
def __post_init__(self):
self.t_acq = np.arange(self.num_points) * self.dwell_time
self.dampening = np.exp(-self.lb * self.t_acq)
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
self.freq = np.fft.fftshift(np.fft.fftfreq(self.num_points, self.dwell_time))
self.pulse_attn = pulse_attn(self.freq, self.t_pulse)
def totext(self) -> str:
return (f'dwell_time{self.dwell_time}\n'
f'num_points={self.num_points}\n'
f't_echo={self.t_echo}\n'
f'lb={self.lb}\n'
f't_pulse={self.t_pulse}')
@dataclass
@ -115,3 +132,14 @@ class Parameter:
dist: DistParameter
motion: MotionParameter
molecule: MoleculeParameter
def totext(self, sim: bool = True, spec: bool = True) -> str:
text = []
if sim:
text.append(self.sim.totext())
if spec:
text.append(self.spec.totext())
return '\n'.join(text)

View File

@ -66,7 +66,8 @@ def _parse_spectrum(params: dict[str, Any] | None) -> SpectrumParameter | None:
num_points=params['num_points'],
dwell_time=params['dwell_time'],
t_echo=_make_times(params['t_echo']),
lb=params['line_broadening']
lb=params.get('line_broadening', 0),
t_pulse=params.get('t_pulse', 0)
)
return spec

View File

@ -1,13 +1,15 @@
from __future__ import annotations
from time import time
from time import perf_counter
import numpy as np
from numpy.random import Generator
from datetime import datetime
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from .functions import ste
from .parameter import Parameter
from .distributions import BaseDistribution
from .motions import BaseMotion
@ -31,32 +33,31 @@ def run_ste_sim(config_file: str):
for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng)
chunks = int(0.6 * t_max / dist_values.get('tau', 1)) + 1
# second loop over parameter of motional model
# second loop over parameter of motion model
for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'\nStart of {dist} and {motion}')
print(f'\nStart of {dist}, {motion}')
start = time()
start = last_print = perf_counter()
cc = np.zeros((len(t_mix), len(t_evo)))
ss = np.zeros((len(t_mix), len(t_evo)))
# inner loop to create trajectories
for n in range(num_traj):
phase = make_trajectory(chunks, dist, motion, t_max)
phase = make_trajectory(dist, motion, t_max)
for (k, t_evo_k) in enumerate(t_evo):
dephased = phase(t_evo_k)
t0= t_mix + t_evo_k
t0 = t_mix + t_evo_k
rephased = phase(t0 + t_evo_k + 2*t_echo) + phase(t0) - 2 * phase(t0+t_echo)
cc[:, k] += np.cos(dephased)*np.cos(rephased)
ss[:, k] += np.sin(dephased)*np.sin(rephased)
print_step(n, num_traj, start)
last_print = print_step(n, num_traj, start, last_print)
cc[:, 1:] /= num_traj
ss[:, 1:] /= num_traj
@ -101,11 +102,9 @@ def run_spectrum_sim(config_file: str):
p = parse(config_file)
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
print(num_traj)
num_echos = len(p.spec.t_echo)
reduction_factor = np.zeros((num_variables, num_echos))
freq = np.fft.fftshift(np.fft.fftfreq(p.spec.num_points, p.spec.dwell_time))
t_echo = p.spec.t_echo
t_echo_strings = list(map(str, t_echo))
@ -113,23 +112,20 @@ def run_spectrum_sim(config_file: str):
for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng)
print(f'\nStart of {dist}')
chunks = int(0.6 * t_max / dist.mean_tau) + 1
# second loop over parameter of motional model
# second loop over parameter of motion model
for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'Start of {motion}')
print(f'\nStart of {dist}, {motion}')
timesignal = np.zeros((p.spec.num_points, num_echos))
start = time()
start = perf_counter()
last_print = start
# inner loop to create trajectories
for n in range(num_traj):
phase = make_trajectory(chunks, dist, motion, t_max)
phase = make_trajectory(dist, motion, t_max)
for (k, t_echo_k) in enumerate(t_echo):
# effect of de-phasing and re-phasing
@ -139,59 +135,61 @@ def run_spectrum_sim(config_file: str):
timesignal[:, k] += np.cos(start_amp + phase(p.spec.t_acq + 2*t_echo_k))
reduction_factor[max(p.motion.num_variables, 1)*i+j, k] += np.cos(phase(2*t_echo_k) + start_amp)
print_step(n, num_traj, start)
# print(n+1, num_traj, start, last_print)
last_print = print_step(n+1, num_traj, start, last_print)
# apply line broadening
timesignal *= p.spec.dampening[:, None]
timesignal /= num_traj
timesignal[0, :] /= 2
# FT to spectrum
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0]
spec *= p.spec.pulse_attn[:, None]
# plot spectra
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'{dist}, {motion}')
ax.legend(lines, t_echo_strings)
plt.show()
save_spectrum_data(timesignal, spec, p, dist, motion, t_echo_strings)
fig2, ax2 = plt.subplots()
ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
lines = ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
ax2.legend(lines, t_echo_strings)
plt.savefig(f'{dist.name}_{motion.name}_reduction.png')
plt.show()
def print_step(n, num_traj, start):
n_1 = n+1
if n_1 % 200 == 0 or n_1 == num_traj:
elapsed = time() - start
print(f'Step {n_1} of {num_traj}', end=' - ')
total = num_traj * elapsed / (n_1)
print(f'total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
def make_trajectory(
dist: BaseDistribution,
motion: BaseMotion,
t_max: float,
t_passed: float = 0.,
init_phase: float = 0.
):
def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_max: float):
# set initial orientations and correlation times
motion.start()
dist.start()
t_passed = 0
t = [0]
phase = [0]
# number of jumps that are simulated at once
chunks = min(int(0.51 * t_max / dist.tau_jump), 100_000) + 1
t = [np.array([t_passed])]
phase = [np.array([init_phase])]
while t_passed < t_max:
# frequencies between jumps
current_omega = motion.jump(size=chunks)
# times at a particular position
t_wait = dist.wait(size=chunks)
accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1]
phase.append(accumulated_phase)
t_wait = np.cumsum(t_wait) + t_passed
t_passed = t_wait[-1]
t.extend(t_wait.tolist())
t.append(t_wait)
phase.extend(accumulated_phase.tolist())
t = np.concatenate(t)
phase = np.concatenate(phase)
# convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase)
@ -200,6 +198,8 @@ def make_trajectory(chunks: int, dist: BaseDistribution, motion: BaseMotion, t_m
def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]:
# collect variables that are common to spectra and stimulated echo
# random number generator
rng = np.random.default_rng(parameter.sim.seed)
@ -217,6 +217,56 @@ def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, fl
return rng, num_traj, t_max, delta, eta, num_variables
def ste(x, a, f_infty, tau, beta):
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
def print_step(n: int, num_traj: int, start: float, last_print: float) -> float:
step_time = perf_counter()
dt = step_time - last_print
if dt > 10 or n == num_traj:
date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
print(f'{date} - step {n} of {num_traj}', end=' - ')
elapsed = step_time - start
total = num_traj * elapsed / n
print(f'expected total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
if dt > 10:
last_print = step_time
return last_print
def make_filename(dist: BaseDistribution, motion: BaseMotion) -> str:
filename = f'{dist}_{motion}'
filename = filename.replace(' ', '_')
filename = filename.replace('.', 'p')
return filename
def save_spectrum_data(
timesignal: np.ndarray,
spectrum: np.ndarray,
param: Parameter,
dist: BaseDistribution,
motion: BaseMotion,
echo_strings: list[str]
):
filename = make_filename(dist, motion)
header = param.totext(sim=True, spec=True)
header += '\nx\t' + '\t'.join(echo_strings)
np.savetxt(filename + '_timesignal.dat', np.c_[param.spec.t_acq, timesignal], header=header)
np.savetxt(filename + '_spectrum.dat', np.c_[param.spec.freq, spectrum], header=header)
fig, ax = plt.subplots()
lines = ax.plot(param.spec.freq, spectrum)
ax.set_title(f'{dist}, {motion}')
ax.legend(lines, echo_strings)
plt.savefig(filename + '_spectrum.png')
fig1, ax1 = plt.subplots()
lines = ax1.plot(param.spec.t_acq, timesignal)
ax1.set_title(f'{dist}, {motion}')
ax1.legend(lines, echo_strings)
plt.savefig(filename + '_timesignal.png')
plt.show()

0
src/rwsims/spectrum.py Normal file
View File

0
src/rwsims/ste.py Normal file
View File