change layout
This commit is contained in:
0
rwsims/__init__.py
Normal file
0
rwsims/__init__.py
Normal file
65
rwsims/distributions.py
Normal file
65
rwsims/distributions.py
Normal file
@ -0,0 +1,65 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
# from numpy.typing import ArrayLike
|
||||
from numpy.random import Generator
|
||||
|
||||
|
||||
class BaseDistribution(ABC):
|
||||
def __init__(self, tau: float, rng: Generator | None = None):
|
||||
self._tau = tau
|
||||
self._rng = rng
|
||||
|
||||
self.tau_jump = tau
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.__class__.__name__
|
||||
|
||||
@abstractmethod
|
||||
def __repr__(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def start(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def mean_tau(self):
|
||||
pass
|
||||
|
||||
def wait(self, size: int = 1) -> ArrayLike:
|
||||
return self._rng.exponential(self.tau_jump, size=size)
|
||||
|
||||
|
||||
class DeltaDistribution(BaseDistribution):
|
||||
|
||||
def __repr__(self):
|
||||
return f'Delta Distribution (tau={self._tau})'
|
||||
|
||||
def start(self):
|
||||
self.tau_jump = self._tau
|
||||
|
||||
@property
|
||||
def mean_tau(self):
|
||||
return self._tau
|
||||
|
||||
|
||||
class LogGaussianDistribution(BaseDistribution):
|
||||
def __init__(self, tau: float, sigma: float, rng: Generator):
|
||||
super().__init__(tau=tau, rng=rng)
|
||||
|
||||
self._sigma = sigma
|
||||
|
||||
def __repr__(self):
|
||||
return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})'
|
||||
|
||||
def start(self):
|
||||
self.tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma)
|
||||
|
||||
@property
|
||||
def mean_tau(self):
|
||||
return self._tau * np.exp(self._sigma**2 / 2)
|
22
rwsims/functions.py
Normal file
22
rwsims/functions.py
Normal file
@ -0,0 +1,22 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
# from numpy.typing import ArrayLike
|
||||
|
||||
from .distributions import BaseDistribution
|
||||
from .motions import BaseMotion
|
||||
|
||||
|
||||
def ste(x, a, f_infty, tau, beta):
|
||||
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
|
||||
|
||||
|
||||
def pulse_attn(freq, t_pulse: float):
|
||||
# cf. Schmitt-Rohr/Spieß eq. 2.126; omega_1 * t_p = pi/2
|
||||
pi_half_squared = np.pi**2 / 4
|
||||
omega = 2 * np.pi * freq
|
||||
|
||||
numerator = np.sin(np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 2))
|
||||
denominator = np.sqrt(pi_half_squared + omega**2 * t_pulse**2 / 4)
|
||||
|
||||
return np.pi * numerator/denominator / 2
|
169
rwsims/motions.py
Normal file
169
rwsims/motions.py
Normal file
@ -0,0 +1,169 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import Generator
|
||||
|
||||
|
||||
class BaseMotion(ABC):
|
||||
def __init__(self, delta: float, eta: float, rng: Generator):
|
||||
self._delta = delta
|
||||
self._eta = eta
|
||||
|
||||
self._rng = rng
|
||||
|
||||
@abstractmethod
|
||||
def __repr__(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return self.__class__.__name__
|
||||
|
||||
def start(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def jump(self, size: int = 1) -> 'ArrayLike':
|
||||
pass
|
||||
|
||||
|
||||
class RandomJump(BaseMotion):
|
||||
|
||||
def __repr__(self):
|
||||
return 'Random Jump'
|
||||
|
||||
def jump(self, size: int = 1) -> 'ArrayLike':
|
||||
return omega_q(self._delta, self._eta, *draw_orientation(self._rng, size=size))
|
||||
|
||||
|
||||
class TetrahedralJump(BaseMotion):
|
||||
def __init__(self, delta: float, eta: float, rng: Generator):
|
||||
super().__init__(delta, eta, rng)
|
||||
|
||||
self._orientation = None
|
||||
self._start = None
|
||||
|
||||
def __repr__(self):
|
||||
return 'Tetrahedral Jump'
|
||||
|
||||
def start(self):
|
||||
self._orientation = self._make_tetrahedron()
|
||||
self._start = self._rng.choice([0, 1, 2, 3])
|
||||
|
||||
def _make_tetrahedron(self) -> np.ndarray:
|
||||
beta = np.arccos(-1/3) # tetrahedral angle 109.5 degrees
|
||||
sin_beta = np.sin(beta)
|
||||
cos_beta = np.cos(beta)
|
||||
|
||||
# corners of a tetrahedron
|
||||
alpha = 2 * np.pi * self._rng.random()
|
||||
corners = np.array([
|
||||
[0, 0, 1],
|
||||
[sin_beta * np.cos(alpha), sin_beta * np.sin(alpha), cos_beta],
|
||||
[sin_beta * np.cos(alpha+2*np.pi/3), sin_beta * np.sin(alpha+2*np.pi/3), cos_beta],
|
||||
[sin_beta * np.cos(alpha+4*np.pi/3), sin_beta * np.sin(alpha+4*np.pi/3), cos_beta]
|
||||
])
|
||||
|
||||
# orientation in lab system
|
||||
cos_theta0, phi0 = draw_orientation(self._rng)
|
||||
|
||||
rot = get_rotation_matrix(
|
||||
corners[0],
|
||||
np.array(spherical_to_xyz(1., np.arccos(cos_theta0), phi0)),
|
||||
)
|
||||
|
||||
orientations = np.zeros(4)
|
||||
for i in range(4):
|
||||
corner_lab = rot @ corners[i]
|
||||
_, theta_i, phi_i = xyz_to_spherical(*corner_lab)
|
||||
orientations[i] = omega_q(self._delta, self._eta, theta_i, phi_i)
|
||||
|
||||
# print(orientations)
|
||||
#
|
||||
# theta0 = np.arccos(cos_theta0)
|
||||
# v0 = np.array([np.sin(theta0) * np.cos(phi0), np.sin(theta0)*np.sin(theta0), cos_theta0])
|
||||
# norm = np.linalg.norm(v0)
|
||||
# print(norm)
|
||||
#
|
||||
#
|
||||
# corners = np.zeros((4, 3))
|
||||
# corners[0] = v0
|
||||
|
||||
|
||||
return orientations
|
||||
|
||||
def jump(self, size: int = 1) -> 'ArrayLike':
|
||||
jumps = self._rng.choice([1, 2, 3], size=size)
|
||||
jumps = np.cumsum(jumps) + self._start
|
||||
jumps %= 4
|
||||
|
||||
self._start = jumps[-1]
|
||||
|
||||
return self._orientation[jumps]
|
||||
|
||||
|
||||
# Helper functions
|
||||
|
||||
def xyz_to_spherical(x_in: float, y_in: float, z_in: float) -> tuple[np.floating, float, float]:
|
||||
r = np.linalg.norm([x_in, y_in, z_in])
|
||||
theta: float = np.arccos(z_in)
|
||||
phi: float = np.arctan2(y_in, x_in)
|
||||
|
||||
return r, theta, phi
|
||||
|
||||
|
||||
def spherical_to_xyz(r: float, theta: float, phi: float) -> tuple[float, float, float]:
|
||||
sin_theta = np.sin(theta)
|
||||
return r*np.cos(phi)*sin_theta, r*np.sin(phi)*sin_theta, r*np.cos(theta)
|
||||
|
||||
|
||||
def get_rotation_matrix(vec_in: np.ndarray, vec_out: np.ndarray):
|
||||
rotation = np.eye(3)
|
||||
|
||||
# rotation by angle around given axis
|
||||
cos_angle = np.dot(vec_in, vec_out)
|
||||
|
||||
# check for parallel / anti-parallel vectors
|
||||
if cos_angle == 1:
|
||||
return rotation
|
||||
elif cos_angle == -1:
|
||||
return -rotation
|
||||
|
||||
else:
|
||||
axis = np.cross(vec_in, vec_out)
|
||||
scale = np.linalg.norm(axis)
|
||||
axis /= scale
|
||||
sin_angle = scale / np.linalg.norm(vec_in) / np.linalg.norm(vec_out)
|
||||
|
||||
v_cross = np.array([
|
||||
[0, -axis[2], axis[1]],
|
||||
[axis[2], 0, -axis[0]],
|
||||
[-axis[1], axis[0], 0],
|
||||
])
|
||||
|
||||
rotation += sin_angle * v_cross
|
||||
rotation += (1-cos_angle) * v_cross @ v_cross
|
||||
|
||||
return rotation
|
||||
|
||||
|
||||
def omega_q(delta: float, eta: float, cos_theta: ArrayLike, phi: ArrayLike) -> ArrayLike:
|
||||
# sin_theta = np.sin(cos_theta)
|
||||
# cos_theta = np.cos(cos_theta)
|
||||
sin_theta_sq = 1 - cos_theta**2
|
||||
return np.pi * delta * (3 * cos_theta**2 - 1 + eta * sin_theta_sq * np.cos(2*phi))
|
||||
|
||||
|
||||
def draw_orientation(rng: Generator, size: int | None = None) -> tuple[ArrayLike, ArrayLike]:
|
||||
if size is not None:
|
||||
z_theta, z_phi = rng.random((2, size))
|
||||
else:
|
||||
z_theta, z_phi = rng.random(2)
|
||||
cos_theta = 1 - 2 * z_theta
|
||||
phi = 2 * np.pi * z_phi
|
||||
|
||||
return cos_theta, phi
|
||||
|
||||
|
145
rwsims/parameter.py
Normal file
145
rwsims/parameter.py
Normal file
@ -0,0 +1,145 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from itertools import product
|
||||
from math import prod
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
# from numpy.typing import ArrayLike
|
||||
|
||||
from .functions import pulse_attn
|
||||
from .distributions import BaseDistribution
|
||||
from .motions import BaseMotion
|
||||
|
||||
__all__ = [
|
||||
'SimParameter',
|
||||
'MoleculeParameter',
|
||||
'StimEchoParameter',
|
||||
'SpectrumParameter',
|
||||
'DistParameter',
|
||||
'MotionParameter',
|
||||
'Parameter',
|
||||
]
|
||||
|
||||
|
||||
@dataclass
|
||||
class SimParameter:
|
||||
seed: int | None
|
||||
num_walker: int
|
||||
t_max: float
|
||||
|
||||
def totext(self) -> str:
|
||||
return f'num_traj={self.num_walker}\nseed={self.seed}'
|
||||
|
||||
|
||||
@dataclass
|
||||
class MoleculeParameter:
|
||||
delta: float
|
||||
eta: float
|
||||
|
||||
|
||||
@dataclass
|
||||
class StimEchoParameter:
|
||||
t_evo: 'ArrayLike'
|
||||
t_mix: 'ArrayLike'
|
||||
t_echo: float
|
||||
t_max: float = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.t_max = np.max(self.t_mix) + 2 * np.max(self.t_evo) + 2*self.t_echo
|
||||
|
||||
|
||||
@dataclass
|
||||
class SpectrumParameter:
|
||||
dwell_time: float
|
||||
num_points: int
|
||||
t_echo: 'ArrayLike'
|
||||
lb: float
|
||||
t_pulse: float
|
||||
t_acq: 'ArrayLike' = field(init=False)
|
||||
freq: 'ArrayLike' = field(init=False)
|
||||
t_max: float = field(init=False)
|
||||
dampening: 'ArrayLike' = field(init=False)
|
||||
pulse_attn: 'ArrayLike' = field(init=False)
|
||||
|
||||
def __post_init__(self):
|
||||
self.t_acq = np.arange(self.num_points) * self.dwell_time
|
||||
self.dampening = np.exp(-self.lb * self.t_acq)
|
||||
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
|
||||
self.freq = np.fft.fftshift(np.fft.fftfreq(self.num_points, self.dwell_time))
|
||||
self.pulse_attn = pulse_attn(self.freq, self.t_pulse)
|
||||
|
||||
def totext(self) -> str:
|
||||
return (f'dwell_time{self.dwell_time}\n'
|
||||
f'num_points={self.num_points}\n'
|
||||
f't_echo={self.t_echo}\n'
|
||||
f'lb={self.lb}\n'
|
||||
f't_pulse={self.t_pulse}')
|
||||
|
||||
|
||||
@dataclass
|
||||
class DistParameter:
|
||||
dist_type: BaseDistribution
|
||||
variables: field(default_factory=dict)
|
||||
num_variables: int = 0
|
||||
iter: field(init=False) = None
|
||||
|
||||
def __post_init__(self):
|
||||
self.num_variables = prod(map(len, self.variables.values()))
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self) -> dict[str, Any]:
|
||||
if self.iter is None:
|
||||
self.iter = product(*self.variables.values())
|
||||
try:
|
||||
return dict(zip(self.variables.keys(), next(self.iter)))
|
||||
except StopIteration:
|
||||
self.iter = None
|
||||
raise StopIteration
|
||||
|
||||
|
||||
@dataclass
|
||||
class MotionParameter:
|
||||
model: BaseMotion
|
||||
variables: field(default_factory=dict)
|
||||
num_variables: int = 0
|
||||
iter: field(init=False) = None
|
||||
|
||||
def __post_init__(self):
|
||||
self.num_variables = prod(map(len, self.variables.values()))
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self) -> dict[str, Any]:
|
||||
if self.iter is None:
|
||||
self.iter = product(*self.variables.values())
|
||||
try:
|
||||
return dict(zip(self.variables.keys(), next(self.iter)))
|
||||
except StopIteration:
|
||||
self.iter = None
|
||||
raise StopIteration
|
||||
|
||||
|
||||
@dataclass
|
||||
class Parameter:
|
||||
ste: StimEchoParameter | None
|
||||
spec: SpectrumParameter | None
|
||||
sim: SimParameter
|
||||
dist: DistParameter
|
||||
motion: MotionParameter
|
||||
molecule: MoleculeParameter
|
||||
|
||||
def totext(self, sim: bool = True, spec: bool = True) -> str:
|
||||
text = []
|
||||
if sim:
|
||||
text.append(self.sim.totext())
|
||||
|
||||
if spec:
|
||||
text.append(self.spec.totext())
|
||||
|
||||
return '\n'.join(text)
|
||||
|
132
rwsims/parsing.py
Normal file
132
rwsims/parsing.py
Normal file
@ -0,0 +1,132 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .distributions import DeltaDistribution, LogGaussianDistribution
|
||||
from .motions import RandomJump, TetrahedralJump
|
||||
from .parameter import *
|
||||
|
||||
|
||||
def parse(config_file: str) -> Parameter:
|
||||
with open(config_file, 'r') as f:
|
||||
parameter: dict = json.load(f)
|
||||
|
||||
ste = _parse_ste(parameter.get('stimulated_echo'))
|
||||
spec = _parse_spectrum(parameter.get('spectrum'))
|
||||
|
||||
if ste is None and spec is None:
|
||||
raise ValueError("No parameter for STE or spectra given")
|
||||
|
||||
t_max = 0
|
||||
if spec is not None:
|
||||
t_max = max(spec.t_max, t_max)
|
||||
if ste is not None:
|
||||
t_max = max(ste.t_max, t_max)
|
||||
parameter['simulation'].update({'t_max': t_max})
|
||||
|
||||
sim = _parse_sim(parameter['simulation'])
|
||||
dist = _parse_dist(parameter['correlation_times'])
|
||||
motion = _parse_motion(parameter['motion'])
|
||||
mol = _parse_molecule(parameter['molecule'])
|
||||
|
||||
p = Parameter(sim=sim, ste=ste, spec=spec, dist=dist, motion=motion, molecule=mol)
|
||||
|
||||
return p
|
||||
|
||||
|
||||
def _parse_sim(params: dict[str, Any]) -> SimParameter:
|
||||
sim = SimParameter(
|
||||
num_walker=params['num_walker'],
|
||||
seed=params['seed'],
|
||||
t_max=params['t_max']
|
||||
)
|
||||
return sim
|
||||
|
||||
|
||||
def _parse_ste(params: dict[str, Any] | None) -> StimEchoParameter | None:
|
||||
if params is None:
|
||||
return
|
||||
|
||||
ste = StimEchoParameter(
|
||||
t_mix=_make_times(params['t_mix']),
|
||||
t_evo=_make_times(params['t_evo']),
|
||||
t_echo=params['t_echo']
|
||||
)
|
||||
return ste
|
||||
|
||||
|
||||
def _parse_spectrum(params: dict[str, Any] | None) -> SpectrumParameter | None:
|
||||
if params is None:
|
||||
return
|
||||
|
||||
spec = SpectrumParameter(
|
||||
num_points=params['num_points'],
|
||||
dwell_time=params['dwell_time'],
|
||||
t_echo=_make_times(params['t_echo']),
|
||||
lb=params.get('line_broadening', 0),
|
||||
t_pulse=params.get('t_pulse', 0)
|
||||
)
|
||||
|
||||
return spec
|
||||
|
||||
|
||||
def _parse_dist(params: dict[str, Any]) -> DistParameter:
|
||||
mapping: dict = {
|
||||
'DeltaDistribution': DeltaDistribution,
|
||||
'LogGaussian': LogGaussianDistribution
|
||||
}
|
||||
p = DistParameter(
|
||||
dist_type=mapping[params['distribution']],
|
||||
variables={k: _make_times(v) for k, v in params.items() if k != 'distribution'},
|
||||
)
|
||||
|
||||
return p
|
||||
|
||||
|
||||
def _parse_motion(params: dict[str, Any]) -> MotionParameter:
|
||||
mapping = {
|
||||
'RandomJump': RandomJump,
|
||||
'TetrahedralJump': TetrahedralJump,
|
||||
}
|
||||
|
||||
p = MotionParameter(
|
||||
model=mapping[params['model']],
|
||||
variables={k: _make_times(v) for k, v in params.items() if k != 'model'}
|
||||
)
|
||||
return p
|
||||
|
||||
|
||||
def _parse_molecule(params: dict[str, Any]) -> MoleculeParameter:
|
||||
return MoleculeParameter(
|
||||
delta=params['delta'],
|
||||
eta=params['eta']
|
||||
)
|
||||
|
||||
|
||||
def _make_times(params: float | int | dict[str, Any]) -> np.ndarray:
|
||||
times = None
|
||||
|
||||
if isinstance(params, (int, float, complex)):
|
||||
times = np.array([params])
|
||||
|
||||
else:
|
||||
if all(k in params for k in ('start', 'stop', 'steps')):
|
||||
space_func = np.linspace
|
||||
if 'is_log' in params and params['is_log']:
|
||||
space_func = np.geomspace
|
||||
|
||||
times = space_func(start=params['start'], stop=params['stop'], num=params['steps'])
|
||||
|
||||
if 'list' in params:
|
||||
if times is not None:
|
||||
raise ValueError('list and range is given')
|
||||
|
||||
times = np.array(params['list'])
|
||||
|
||||
if times is None:
|
||||
raise ValueError('No times are given')
|
||||
|
||||
return times
|
284
rwsims/sims.py
Normal file
284
rwsims/sims.py
Normal file
@ -0,0 +1,284 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from time import perf_counter
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import Generator
|
||||
from datetime import datetime
|
||||
from scipy.interpolate import interp1d
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
from .functions import ste
|
||||
from .parameter import Parameter
|
||||
from .distributions import BaseDistribution
|
||||
from .motions import BaseMotion
|
||||
from .parsing import parse
|
||||
|
||||
|
||||
def run_ste_sim(config_file: str):
|
||||
p = parse(config_file)
|
||||
|
||||
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
|
||||
|
||||
t_mix = p.ste.t_mix
|
||||
t_evo = p.ste.t_evo
|
||||
t_echo = p.ste.t_echo
|
||||
|
||||
fig, ax = plt.subplots(2)
|
||||
fig2, ax2 = plt.subplots(2)
|
||||
fig3, ax3 = plt.subplots(2)
|
||||
|
||||
# outer loop over variables of distribution of correlation times
|
||||
for (i, dist_values) in enumerate(p.dist):
|
||||
# noinspection PyCallingNonCallable
|
||||
dist = p.dist.dist_type(**dist_values, rng=rng)
|
||||
|
||||
# second loop over parameter of motion model
|
||||
for (j, motion_values) in enumerate(p.motion):
|
||||
# noinspection PyCallingNonCallable
|
||||
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
|
||||
|
||||
print(f'\nStart of {dist}, {motion}')
|
||||
|
||||
start = last_print = perf_counter()
|
||||
|
||||
cc = np.zeros((len(t_mix), len(t_evo)))
|
||||
ss = np.zeros((len(t_mix), len(t_evo)))
|
||||
|
||||
# inner loop to create trajectories
|
||||
for n in range(num_traj):
|
||||
phase = make_trajectory(dist, motion, t_max)
|
||||
|
||||
for (k, t_evo_k) in enumerate(t_evo):
|
||||
dephased = phase(t_evo_k)
|
||||
t0 = t_mix + t_evo_k
|
||||
rephased = phase(t0 + t_evo_k + 2*t_echo) + phase(t0) - 2 * phase(t0+t_echo)
|
||||
# print(t_evo_k, t0 + t_evo_k + 2*t_echo, t0)
|
||||
cc[:, k] += np.cos(dephased)*np.cos(rephased)
|
||||
ss[:, k] += np.sin(dephased)*np.sin(rephased)
|
||||
|
||||
last_print = print_step(n, num_traj, start, last_print)
|
||||
|
||||
cc[:, 1:] /= num_traj
|
||||
ss[:, 1:] /= num_traj
|
||||
|
||||
fig4, ax4 = plt.subplots()
|
||||
ax4.semilogx(t_mix, cc/cc[0, :], '.-')
|
||||
fig5, ax5 = plt.subplots()
|
||||
ax5.semilogx(t_mix, ss/ss[0, :], '.-')
|
||||
|
||||
for k in range(num_variables):
|
||||
p0 = [0.5, 0, dist_values.get('tau', 1), 1]
|
||||
|
||||
p_final = []
|
||||
p_final1 = []
|
||||
for k, t_evo_k in enumerate(p.ste.t_evo):
|
||||
|
||||
try:
|
||||
res = curve_fit(ste, t_mix, cc[:, k], p0=p0, bounds=([0, 0, 0, 0], [np.inf, 1, np.inf, 1]))
|
||||
p_final.append(res[0].tolist())
|
||||
except RuntimeError:
|
||||
p_final.append([np.nan, np.nan, np.nan, np.nan])
|
||||
|
||||
try:
|
||||
res2 = curve_fit(ste, t_mix, ss[:, k], p0=p0, bounds=([0, 0, 0, 0], [np.inf, 1, np.inf, 1]))
|
||||
p_final1.append(res2[0].tolist())
|
||||
except RuntimeError:
|
||||
p_final1.append([np.nan, np.nan, np.nan, np.nan])
|
||||
|
||||
p_final = np.array(p_final)
|
||||
p_final1 = np.array(p_final1)
|
||||
# ax[0].semilogy(p.ste.t_evo, p_final[:, 0], '.--')
|
||||
# ax[1].semilogy(t_evo, p_final1[:, 0], '.--')
|
||||
ax[0].plot(t_evo, p_final[:, 1], '.-')
|
||||
ax[1].plot(t_evo, p_final1[:, 1], '.-')
|
||||
ax2[0].semilogy(t_evo, p_final[:, 2], '.-')
|
||||
ax2[1].semilogy(t_evo, p_final1[:, 2], '.-')
|
||||
ax3[0].plot(t_evo, p_final[:, 3], '.-')
|
||||
ax3[1].plot(t_evo, p_final1[:, 3], '.-')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def run_spectrum_sim(config_file: str):
|
||||
p = parse(config_file)
|
||||
|
||||
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
|
||||
|
||||
num_echos = len(p.spec.t_echo)
|
||||
reduction_factor = np.zeros((num_variables, num_echos))
|
||||
t_echo = p.spec.t_echo
|
||||
t_echo_strings = list(map(str, t_echo))
|
||||
|
||||
# outer loop over variables of distribution of correlation times
|
||||
for (i, dist_values) in enumerate(p.dist):
|
||||
# noinspection PyCallingNonCallable
|
||||
dist = p.dist.dist_type(**dist_values, rng=rng)
|
||||
# second loop over parameter of motion model
|
||||
for (j, motion_values) in enumerate(p.motion):
|
||||
# noinspection PyCallingNonCallable
|
||||
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
|
||||
print(f'\nStart of {dist}, {motion}')
|
||||
|
||||
timesignal = np.zeros((p.spec.num_points, num_echos))
|
||||
|
||||
start = perf_counter()
|
||||
last_print = start
|
||||
|
||||
# inner loop to create trajectories
|
||||
for n in range(num_traj):
|
||||
phase = make_trajectory(dist, motion, t_max)
|
||||
|
||||
for (k, t_echo_k) in enumerate(t_echo):
|
||||
# effect of de-phasing and re-phasing
|
||||
start_amp = -2 * phase(t_echo_k)
|
||||
|
||||
# start of actual acquisition
|
||||
timesignal[:, k] += np.cos(start_amp + phase(p.spec.t_acq + 2*t_echo_k))
|
||||
reduction_factor[max(p.motion.num_variables, 1)*i+j, k] += np.cos(phase(2*t_echo_k) + start_amp)
|
||||
|
||||
# print(n+1, num_traj, start, last_print)
|
||||
last_print = print_step(n+1, num_traj, start, last_print)
|
||||
|
||||
# apply line broadening
|
||||
timesignal *= p.spec.dampening[:, None]
|
||||
timesignal /= num_traj
|
||||
timesignal[0, :] /= 2
|
||||
|
||||
# FT to spectrum
|
||||
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
|
||||
spec -= spec[0]
|
||||
spec *= p.spec.pulse_attn[:, None]
|
||||
|
||||
save_spectrum_data(timesignal, spec, p, dist, motion, t_echo_strings)
|
||||
|
||||
fig2, ax2 = plt.subplots()
|
||||
lines = ax2.semilogx(p.dist.variables['tau'], reduction_factor / num_traj, 'o--')
|
||||
ax2.legend(lines, t_echo_strings)
|
||||
plt.savefig(f'{dist.name}_{motion.name}_reduction.png')
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def make_trajectory(
|
||||
dist: BaseDistribution,
|
||||
motion: BaseMotion,
|
||||
t_max: float,
|
||||
t_passed: float = 0.,
|
||||
init_phase: float = 0.
|
||||
):
|
||||
|
||||
# set initial orientations and correlation times
|
||||
motion.start()
|
||||
dist.start()
|
||||
|
||||
# number of jumps that are simulated at once
|
||||
chunks = min(int(0.51 * t_max / dist.tau_jump), 100_000) + 1
|
||||
# print(chunks)
|
||||
|
||||
t = [np.array([t_passed])]
|
||||
phase = [np.array([init_phase])]
|
||||
# omega = [np.array([0])]
|
||||
while t_passed < t_max:
|
||||
# frequencies between jumps
|
||||
current_omega = motion.jump(size=chunks)
|
||||
# times at a particular position
|
||||
t_wait = dist.wait(size=chunks)
|
||||
|
||||
accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1][-1]
|
||||
phase.append(accumulated_phase)
|
||||
# omega.append(current_omega)
|
||||
|
||||
t_wait = np.cumsum(t_wait) + t_passed
|
||||
t_passed = t_wait[-1]
|
||||
t.append(t_wait)
|
||||
|
||||
t = np.concatenate(t)
|
||||
phase = np.concatenate(phase)
|
||||
# omega = np.concatenate(omega)
|
||||
|
||||
# fig_test, ax_test = plt.subplots()
|
||||
# ax_test.plot(t, phase, 'x-')
|
||||
|
||||
# np.savetxt('trajectory.dat', np.c_[t, phase, omega])
|
||||
|
||||
# convenient interpolation to get phase at arbitrary times
|
||||
phase_interpol = interp1d(t, phase)
|
||||
|
||||
return phase_interpol
|
||||
|
||||
|
||||
def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]:
|
||||
# collect variables that are common to spectra and stimulated echo
|
||||
|
||||
# random number generator
|
||||
rng = np.random.default_rng(parameter.sim.seed)
|
||||
|
||||
# number of random walkers
|
||||
num_traj = parameter.sim.num_walker
|
||||
|
||||
# length of trajectories
|
||||
t_max = parameter.sim.t_max
|
||||
|
||||
# parameter for omega_q
|
||||
delta, eta = parameter.molecule.delta, parameter.molecule.eta
|
||||
|
||||
num_variables = parameter.dist.num_variables * parameter.motion.num_variables
|
||||
|
||||
return rng, num_traj, t_max, delta, eta, num_variables
|
||||
|
||||
|
||||
def print_step(n: int, num_traj: int, start: float, last_print: float) -> float:
|
||||
step_time = perf_counter()
|
||||
dt = step_time - last_print
|
||||
if dt > 10 or n == num_traj:
|
||||
date = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
|
||||
print(f'{date} - step {n} of {num_traj}', end=' - ')
|
||||
|
||||
elapsed = step_time - start
|
||||
total = num_traj * elapsed / n
|
||||
print(f'expected total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
|
||||
if dt > 10:
|
||||
last_print = step_time
|
||||
|
||||
return last_print
|
||||
|
||||
|
||||
def make_filename(dist: BaseDistribution, motion: BaseMotion) -> str:
|
||||
filename = f'{dist}_{motion}'
|
||||
filename = filename.replace(' ', '_')
|
||||
filename = filename.replace('.', 'p')
|
||||
|
||||
return filename
|
||||
|
||||
|
||||
def save_spectrum_data(
|
||||
timesignal: np.ndarray,
|
||||
spectrum: np.ndarray,
|
||||
param: Parameter,
|
||||
dist: BaseDistribution,
|
||||
motion: BaseMotion,
|
||||
echo_strings: list[str]
|
||||
):
|
||||
filename = make_filename(dist, motion)
|
||||
|
||||
header = param.totext(sim=True, spec=True)
|
||||
header += '\nx\t' + '\t'.join(echo_strings)
|
||||
|
||||
np.savetxt(filename + '_timesignal.dat', np.c_[param.spec.t_acq, timesignal], header=header)
|
||||
np.savetxt(filename + '_spectrum.dat', np.c_[param.spec.freq, spectrum], header=header)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
lines = ax.plot(param.spec.freq, spectrum)
|
||||
ax.set_title(f'{dist}, {motion}')
|
||||
ax.legend(lines, echo_strings)
|
||||
plt.savefig(filename + '_spectrum.png')
|
||||
|
||||
fig1, ax1 = plt.subplots()
|
||||
lines = ax1.plot(param.spec.t_acq, timesignal)
|
||||
ax1.set_title(f'{dist}, {motion}')
|
||||
ax1.legend(lines, echo_strings)
|
||||
plt.savefig(filename + '_timesignal.png')
|
||||
|
||||
plt.show()
|
0
rwsims/spectrum.py
Normal file
0
rwsims/spectrum.py
Normal file
0
rwsims/ste.py
Normal file
0
rwsims/ste.py
Normal file
145
rwsims/tetrahedral_spectrum.py
Normal file
145
rwsims/tetrahedral_spectrum.py
Normal file
@ -0,0 +1,145 @@
|
||||
from time import time
|
||||
|
||||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# spectral parameter
|
||||
delta = 161e3 # in Hz
|
||||
eta = 0
|
||||
lb = 10e3 # in Hz
|
||||
|
||||
# correlation time
|
||||
tau = [1e-5] # in s
|
||||
|
||||
# acquisition parameter
|
||||
acq_length = 4096
|
||||
dt = 1e-6 # in s
|
||||
t_echo = [0, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
|
||||
|
||||
# derived parameter
|
||||
t_acq = np.arange(acq_length) * dt
|
||||
t_max = acq_length*dt + 2*max(t_echo)
|
||||
dampening = np.exp(-lb * t_acq)
|
||||
|
||||
# random number generator
|
||||
seed = None
|
||||
rng = np.random.default_rng(seed)
|
||||
|
||||
# number of random walkers
|
||||
num_traj = 10000
|
||||
|
||||
|
||||
def omega_q(delta_: float, eta_: float, theta_: float, phi_: float) -> np.ndarray:
|
||||
cos_theta = np.cos(theta_)
|
||||
sin_theta = np.sin(theta_)
|
||||
return 2 * np.pi * delta_ * (3 * cos_theta * cos_theta - 1 + eta_ * sin_theta*sin_theta * np.cos(2*phi_))
|
||||
|
||||
|
||||
def rotate(x_in: float, y_in: float, z_in: float, a: float) -> tuple[float, float]:
|
||||
# rotation by tetrahedral angle is a given, only second angle is free parameter
|
||||
beta = 109.45 * np.pi / 180.
|
||||
cos_beta = np.cos(beta)
|
||||
sin_beta = np.sin(beta)
|
||||
|
||||
cos_alpha = np.cos(a)
|
||||
sin_alpha = np.sin(a)
|
||||
|
||||
scale = np.sqrt(1 - z_in * z_in) + 1e-12
|
||||
|
||||
x = x_in * cos_beta + sin_beta / scale * (x_in * z_in * cos_alpha - y_in * sin_alpha)
|
||||
y = y_in * cos_beta + sin_beta / scale * (y_in * z_in * cos_alpha + x_in * sin_alpha)
|
||||
z = z_in * cos_beta - scale * sin_beta*cos_alpha
|
||||
z = max(-1, min(1, z))
|
||||
|
||||
return np.arccos(z), np.arctan2(y, x)
|
||||
|
||||
|
||||
for tau_i in tau:
|
||||
print(f'\nStart for tau={tau_i}')
|
||||
|
||||
timesignal = np.zeros((acq_length, len(t_echo)))
|
||||
|
||||
start = time()
|
||||
expected_jumps = round(t_max/tau_i)
|
||||
|
||||
for i in range(num_traj):
|
||||
# draw orientation
|
||||
z_theta, z_phi, z_alpha = rng.random(3)
|
||||
theta = np.arccos(1 - 2 * z_theta)
|
||||
phi = 2 * np.pi * z_phi
|
||||
alpha = 2 * np.pi * z_alpha
|
||||
|
||||
# orientation in cartesian coordinates
|
||||
x_start = np.sin(theta) * np.cos(phi)
|
||||
y_start = np.sin(theta) * np.sin(phi)
|
||||
z_start = np.cos(theta)
|
||||
|
||||
# calculate orientation of tetrahedral edges and their frequencies
|
||||
orientation = np.zeros(4)
|
||||
orientation[0] = omega_q(delta, eta, theta, phi)
|
||||
orientation[1] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha))
|
||||
orientation[2] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 2 * np.pi / 3))
|
||||
orientation[3] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 4 * np.pi / 3))
|
||||
|
||||
t_passed = 0
|
||||
t = [0]
|
||||
phase = [0]
|
||||
accumulated_phase = 0
|
||||
current_orientation = rng.choice([0, 1, 2, 3])
|
||||
|
||||
while t_passed < t_max:
|
||||
# orientation until the next jump
|
||||
# always jump to a different position i -> i + {1, 2, 3}
|
||||
current_orientation += rng.choice([1, 2, 3])
|
||||
current_orientation %= 4
|
||||
|
||||
current_omega = orientation[current_orientation]
|
||||
|
||||
# time to next jump
|
||||
t_wait = rng.exponential(tau_i)
|
||||
|
||||
t_passed += t_wait
|
||||
accumulated_phase += t_wait * current_omega
|
||||
|
||||
t.append(t_passed)
|
||||
phase.append(accumulated_phase)
|
||||
|
||||
# convenient interpolation to get phase at arbitrary times
|
||||
phase_interpol = interp1d(t, phase)
|
||||
|
||||
for j, t_echo_j in enumerate(t_echo):
|
||||
# effect of de-phasing and re-phasing
|
||||
start_amp = -2 * phase_interpol(t_echo_j)
|
||||
|
||||
# start of actual acquisition
|
||||
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
|
||||
|
||||
if (i+1) % 200 == 0:
|
||||
elapsed = time()-start
|
||||
print(f'Step {i+1} of {num_traj}', end=' - ')
|
||||
total = num_traj * elapsed / (i+1)
|
||||
print(f'elapsed: {elapsed:.2f}s - total: {total:.2f}s - remaining: {total-elapsed:.2f}s')
|
||||
|
||||
timesignal /= num_traj
|
||||
|
||||
# FT to spectrum
|
||||
freq = np.fft.fftshift(np.fft.fftfreq(acq_length, dt))
|
||||
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
|
||||
spec -= spec[0]
|
||||
|
||||
t_echo_strings = list(map(str, t_echo))
|
||||
|
||||
# plot spectra
|
||||
fig, ax = plt.subplots()
|
||||
lines = ax.plot(freq, spec)
|
||||
ax.set_title(f'tau = {tau_i}s')
|
||||
ax.legend(lines, t_echo_strings)
|
||||
# plt.savefig(f'{tau_i}.png')
|
||||
|
||||
# save time signals and spectra
|
||||
# np.savetxt(f'spectrum_{tau_i}.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
|
||||
# np.savetxt(f'timesignal_{tau_i}.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
|
||||
|
||||
plt.show()
|
165
rwsims/tetrahedral_spectrum_chunk.py
Normal file
165
rwsims/tetrahedral_spectrum_chunk.py
Normal file
@ -0,0 +1,165 @@
|
||||
from time import time
|
||||
from numpy.typing import ArrayLike
|
||||
import numpy as np
|
||||
from scipy.interpolate import interp1d
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
# spectral parameter
|
||||
delta = 161e3 # in Hz
|
||||
eta = 0
|
||||
lb = 5e3 # in Hz
|
||||
|
||||
# correlation time
|
||||
tau = np.logspace(-8, -1, num=15) # in s
|
||||
|
||||
# acquisition parameter
|
||||
acq_length = 4096
|
||||
dt = 1e-6 # in s
|
||||
t_echo = [5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
|
||||
|
||||
# derived parameter
|
||||
t_acq = np.arange(acq_length) * dt
|
||||
t_max = acq_length*dt + 2*max(t_echo)
|
||||
dampening = np.exp(-lb * t_acq)
|
||||
|
||||
# random number generator
|
||||
seed = None
|
||||
rng = np.random.default_rng(seed)
|
||||
|
||||
# number of random walkers
|
||||
num_traj = 1
|
||||
|
||||
|
||||
def omega_q(delta_: float, eta_: float, theta_: ArrayLike, phi_: ArrayLike) -> np.ndarray:
|
||||
cos_theta = np.cos(theta_)
|
||||
sin_theta = np.sin(theta_)
|
||||
return 2 * np.pi * delta_ * (3 * cos_theta * cos_theta - 1 + eta_ * sin_theta*sin_theta * np.cos(2*phi_))
|
||||
|
||||
|
||||
def rotate(x_in: float, y_in: float, z_in: float, a: float) -> tuple[float, float]:
|
||||
# rotation by tetrahedral angle is a given, only second angle is free parameter
|
||||
beta = 109.45 * np.pi / 180.
|
||||
cos_beta = np.cos(beta)
|
||||
sin_beta = np.sin(beta)
|
||||
|
||||
cos_alpha = np.cos(a)
|
||||
sin_alpha = np.sin(a)
|
||||
|
||||
scale = np.sqrt(1 - z_in * z_in) + 1e-12
|
||||
|
||||
x = x_in * cos_beta + sin_beta / scale * (x_in * z_in * cos_alpha - y_in * sin_alpha)
|
||||
y = y_in * cos_beta + sin_beta / scale * (y_in * z_in * cos_alpha + x_in * sin_alpha)
|
||||
z = z_in * cos_beta - scale * sin_beta*cos_alpha
|
||||
z = max(-1, min(1, z))
|
||||
|
||||
return np.arccos(z), np.arctan2(y, x)
|
||||
|
||||
|
||||
def new_tau(size=1) -> np.ndarray:
|
||||
return rng.exponential(tau_i, size=size)
|
||||
|
||||
|
||||
reduction_factor = np.zeros((len(tau), len(t_echo)))
|
||||
|
||||
|
||||
for (n, tau_i) in enumerate(tau):
|
||||
print(f'\nStart for tau={tau_i}')
|
||||
|
||||
timesignal = np.zeros((acq_length, len(t_echo)))
|
||||
|
||||
start = time()
|
||||
expected_jumps = round(t_max/tau_i)
|
||||
if expected_jumps > 1e7:
|
||||
print(f'Too many jumps to process, Skip {tau_i}s')
|
||||
continue
|
||||
|
||||
chunks = int(0.6 * t_max / tau_i) + 1
|
||||
print(f'Chunk size for trajectories: {chunks}')
|
||||
|
||||
for i in range(num_traj):
|
||||
# draw orientation
|
||||
z_theta, z_phi, z_alpha = rng.random(3)
|
||||
theta = np.arccos(1 - 2 * z_theta)
|
||||
phi = 2 * np.pi * z_phi
|
||||
alpha = 2 * np.pi * z_alpha
|
||||
|
||||
# orientation in cartesian coordinates
|
||||
x_start = np.sin(theta) * np.cos(phi)
|
||||
y_start = np.sin(theta) * np.sin(phi)
|
||||
z_start = np.cos(theta)
|
||||
|
||||
# calculate orientation of tetrahedral edges and their frequencies
|
||||
orientation = np.zeros(4)
|
||||
orientation[0] = omega_q(delta, eta, theta, phi)
|
||||
orientation[1] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha))
|
||||
orientation[2] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 2 * np.pi / 3))
|
||||
orientation[3] = omega_q(delta, eta, *rotate(x_start, y_start, z_start, alpha + 4 * np.pi / 3))
|
||||
|
||||
t_passed = 0
|
||||
t = [0]
|
||||
phase = [0]
|
||||
accumulated_phase = 0
|
||||
start_position = rng.choice([0, 1, 2, 3])
|
||||
|
||||
while t_passed < t_max:
|
||||
# orientation until the next jump
|
||||
jumps = rng.choice([1, 2, 3], size=chunks) + start_position
|
||||
jumps = np.cumsum(jumps)
|
||||
jumps %= 4
|
||||
|
||||
current_omega = orientation[jumps]
|
||||
# current_omega = rng.choice(orientation, size=chunks)
|
||||
|
||||
# time to next jump
|
||||
t_wait = new_tau(size=chunks)
|
||||
accumulated_phase = np.cumsum(t_wait*current_omega) + phase[-1]
|
||||
|
||||
t_wait = np.cumsum(t_wait) + t_passed
|
||||
t_passed = t_wait[-1]
|
||||
t.extend(t_wait.tolist())
|
||||
|
||||
phase.extend(accumulated_phase.tolist())
|
||||
|
||||
# convenient interpolation to get phase at arbitrary times
|
||||
phase_interpol = interp1d(t, phase)
|
||||
|
||||
for j, t_echo_j in enumerate(t_echo):
|
||||
# effect of de-phasing and re-phasing
|
||||
start_amp = -2 * phase_interpol(t_echo_j)
|
||||
|
||||
# start of actual acquisition
|
||||
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
|
||||
reduction_factor[n, j] += np.cos(phase_interpol(2*t_echo_j) + start_amp)
|
||||
|
||||
if (i+1) % 200 == 0:
|
||||
elapsed = time()-start
|
||||
print(f'Step {i+1} of {num_traj}', end=' - ')
|
||||
total = num_traj * elapsed / (i+1)
|
||||
print(f'elapsed: {elapsed:.2f}s - total: {total:.2f}s - remaining: {total-elapsed:.2f}s')
|
||||
|
||||
timesignal /= num_traj
|
||||
|
||||
# FT to spectrum
|
||||
freq = np.fft.fftshift(np.fft.fftfreq(acq_length, dt))
|
||||
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
|
||||
spec -= spec[0]
|
||||
# spec /= np.max(spec, axis=0)
|
||||
|
||||
t_echo_strings = list(map(str, t_echo))
|
||||
|
||||
# plot spectra
|
||||
fig, ax = plt.subplots()
|
||||
lines = ax.plot(freq, spec)
|
||||
ax.set_title(f'tau = {tau_i}s')
|
||||
ax.legend(lines, t_echo_strings)
|
||||
# plt.savefig(f'{tau_i}.png')
|
||||
|
||||
# save time signals and spectra
|
||||
# np.savetxt(f'spectrum_{tau_i}.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
|
||||
# np.savetxt(f'timesignal_{tau_i}.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
|
||||
|
||||
fig2, ax2 = plt.subplots()
|
||||
ax2.semilogx(tau, reduction_factor / num_traj, 'o--')
|
||||
|
||||
plt.show()
|
Reference in New Issue
Block a user