more modularity

This commit is contained in:
Dominik Demuth 2024-06-19 19:10:49 +02:00
parent b88bd0dbd6
commit b2164c944a
14 changed files with 614 additions and 243 deletions

View File

@ -1,4 +1,4 @@
Copyright (c) 2024 dominik.
Copyright (c) 2024 Dominik Demuth
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

33
pyproject.toml Normal file
View File

@ -0,0 +1,33 @@
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
[project]
name = "rwsims"
version = "0.0.1"
authors = [
{ name="Dominik Demuth", email="dominik.demuth@pkm.tu-darmstadt.de" },
]
maintainers = [
{ name="Dominik Demuth", email="dominik.demuth@pkm.tu-darmstadt.de"}
]
description = "A small example package"
readme = "README.md"
requires-python = ">=3.8"
dependencies = [
"numpy",
"matplotlib"
]
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: BSD-3 Clause",
"Operating System :: OS Independent",
]
[project.scripts]
rw_spectra = "scripts.sim_spectra"
rw_ste = "scripts.sim_ste"
[project.urls]
Homepage = "https://github.com/pypa/sampleproject"
Issues = "https://github.com/pypa/sampleproject/issues"

View File

@ -1,114 +0,0 @@
from time import time
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
# spectral parameter
delta = 161e3 # in Hz
eta = 0
lb = 2e3 # in Hz
# correlation time
tau = [1e-7] # in s
# acquisition parameter
acq_length = 4096
dt = 1e-6 # in s
t_echo = [0, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
# derived parameter
t_acq = np.arange(acq_length) * dt
t_max = acq_length*dt + 2*max(t_echo)
dampening = np.exp(-lb * t_acq)
# random number generator
seed = 1234
rng = np.random.default_rng(seed)
# number of random walkers
num_traj = 5000
def omega_q(delta_: float, eta_: float, theta_: float, phi_: float) -> float:
cos_theta = np.cos(theta_)
sin_theta = np.sin(theta_)
return 2 * np.pi * delta_ * (3 * cos_theta * cos_theta - 1 + eta_ * sin_theta*sin_theta * np.cos(2*phi_))
def new_orientation(delta_: float, eta_: float) -> float:
z_theta, z_phi = rng.random(2)
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
return omega_q(delta_, eta_, theta, phi)
for tau_i in tau:
print(f'\nStart for tau={tau_i}')
timesignal = np.zeros((acq_length, len(t_echo)))
start = time()
expected_jumps = round(t_max/tau_i)
if expected_jumps > 1e7:
print(f'Too many jumps to process, Skip {tau_i}s')
continue
for i in range(num_traj):
t_passed = 0
t = [0]
phase = [0]
accumulated_phase = 0
while t_passed < t_max:
# orientation until the next jump
current_omega = new_orientation(delta, eta)
# time to next jump
t_wait = rng.exponential(tau_i)
t_passed += t_wait
accumulated_phase += t_wait * current_omega
t.append(t_passed)
phase.append(accumulated_phase)
# convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase)
for j, t_echo_j in enumerate(t_echo):
# effect of de-phasing and re-phasing
start_amp = -2 * phase_interpol(t_echo_j)
# start of actual acquisition
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
if (i+1) % 200 == 0:
elapsed = time()-start
print(f'Step {i+1} of {num_traj}', end=' - ')
total = num_traj * elapsed / (i+1)
print(f'elapsed: {elapsed:.2f}s - total: {total:.2f}s - remaining: {total-elapsed:.2f}s')
timesignal /= num_traj
# FT to spectrum
freq = np.fft.fftshift(np.fft.fftfreq(acq_length, dt))
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0]
t_echo_strings = list(map(str, t_echo))
# plot spectra
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'RJ (tau = {tau_i}s)')
ax.legend(lines, t_echo_strings)
# plt.savefig(f'RJ_{tau_i}.png')
# # save time signals and spectra
# np.savetxt(f'rj_spectrum_{tau_i}.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
# np.savetxt(f'rj_timesignal_{tau_i}.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
plt.show()

View File

@ -1,123 +0,0 @@
from time import time
import numpy as np
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
# spectral parameter
delta = 161e3 # in Hz
eta = 0
lb = 5e3 # in Hz
# correlation time
tau = [1e-5] # in s
# acquisition parameter
acq_length = 4096
dt = 1e-6 # in s
t_echo = [0, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
# derived parameter
t_acq = np.arange(acq_length) * dt
t_max = acq_length*dt + 2*max(t_echo)
dampening = np.exp(-lb * t_acq)
# random number generator
seed = None
rng = np.random.default_rng(seed)
# number of random walkers
num_traj = 50000
def omega_q(delta_: float, eta_: float, theta_: float, phi_: float) -> np.ndarray:
cos_theta = np.cos(theta_)
sin_theta = np.sin(theta_)
return 2 * np.pi * delta_ * (3 * cos_theta * cos_theta - 1 + eta_ * sin_theta*sin_theta * np.cos(2*phi_))
def new_orientation(delta_: float, eta_: float, size=1) -> np.ndarray:
z_theta, z_phi = rng.random((2, size))
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
return omega_q(delta_, eta_, theta, phi)
def new_tau(size=1) -> np.ndarray:
return rng.exponential(tau_i, size=size)
for tau_i in tau:
print(f'\nStart for tau={tau_i}')
timesignal = np.zeros((acq_length, len(t_echo)))
start = time()
expected_jumps = round(t_max/tau_i)
if expected_jumps > 1e7:
print(f'Too many jumps to process, Skip {tau_i}s')
continue
chunks = int(0.6 * t_max / tau_i) + 1
print(f'Chunk size for trajectories: {chunks}')
for i in range(num_traj):
t_passed = 0
t = [0]
phase = [0]
accumulated_phase = 0
while t_passed < t_max:
# orientation until the next jump
current_omega = new_orientation(delta, eta, size=chunks)
# time to next jump
t_wait = new_tau(size=chunks)
accumulated_phase = np.cumsum(t_wait*current_omega) + phase[-1]
t_wait = np.cumsum(t_wait) + t_passed
t_passed = t_wait[-1]
t.extend(t_wait.tolist())
phase.extend(accumulated_phase.tolist())
# convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase)
for j, t_echo_j in enumerate(t_echo):
# effect of de-phasing and re-phasing
start_amp = -2 * phase_interpol(t_echo_j)
# start of actual acquisition
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
if (i+1) % 200 == 0:
elapsed = time()-start
print(f'Step {i+1} of {num_traj}', end=' - ')
total = num_traj * elapsed / (i+1)
print(f'elapsed: {elapsed:.2f}s - total: {total:.2f}s - remaining: {total-elapsed:.2f}s')
timesignal /= num_traj
# FT to spectrum
freq = np.fft.fftshift(np.fft.fftfreq(acq_length, dt))
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0]
# spec /= np.max(spec, axis=0)
t_echo_strings = list(map(str, t_echo))
# plot spectra
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'RJ (tau = {tau_i}s)')
ax.legend(lines, t_echo_strings)
# plt.savefig(f'RJ_{tau_i}.png')
# # save time signals and spectra
# np.savetxt(f'rj_spectrum_{tau_i}_chunky.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
# np.savetxt(f'rj_timesignal_{tau_i}_chunky.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
plt.show()

39
src/config.json Normal file
View File

@ -0,0 +1,39 @@
{
"simulation": {
"num_walker": 2500,
"seed": null
},
"molecule": {
"delta": 161e3,
"eta": 0.0
},
"correlation_times": {
"distribution": "DeltaDistribution",
"tau": {
"start": 1e-4,
"stop": 1e-2,
"steps": 6,
"is_log": true
}
},
"motion": {
"model": "RandomJump"
},
"spectrum": {
"dwell_time": 1e-6,
"num_points": 4096,
"t_echo": {
"list": [0, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6]
},
"line_broadening": 2e3
},
"stimulated_echo": {
"t_evo": 10e-6,
"t_mix": {
"start": 1e-5,
"stop": 1e-2,
"steps": 10,
"is_log": true
}
}
}

30
src/config_ste.json Normal file
View File

@ -0,0 +1,30 @@
{
"simulation": {
"num_walker": 20000,
"seed": null
},
"molecule": {
"delta": 161e3,
"eta": 0.0
},
"correlation_times": {
"distribution": "DeltaDistribution",
"tau": 1e-2
},
"motion": {
"model": "RandomJump"
},
"stimulated_echo": {
"t_evo": {
"start": 1e-6,
"stop": 40e-6,
"steps": 80
},
"t_mix": {
"start": 1e-5,
"stop": 1e0,
"steps": 21,
"is_log": true
}
}
}

0
src/rwsims/__init__.py Normal file
View File

View File

@ -0,0 +1,16 @@
from __future__ import annotations
from numpy.typing import ArrayLike
from numpy.random import Generator
class DeltaDistribution:
def __init__(self, tau: float, rng: Generator | None = None):
self._tau = tau
self._rng = rng
def __repr__(self):
return f'DeltaDistribution (tau={self._tau})'
def wait(self, size: int = 1) -> ArrayLike:
return self._rng.exponential(self._tau, size=size)

33
src/rwsims/motions.py Normal file
View File

@ -0,0 +1,33 @@
from __future__ import annotations
import numpy as np
from numpy.random import Generator
from numpy.typing import ArrayLike
def omega_q(delta: float, eta: float, theta: float, phi: float) -> ArrayLike:
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
return 2 * np.pi * delta * (3 * cos_theta * cos_theta - 1 + eta * sin_theta*sin_theta * np.cos(2*phi))
def draw_orientation(delta: float, eta: float, rng: Generator, size: int = 1) -> ArrayLike:
z_theta, z_phi = rng.random((2, size))
theta = np.arccos(1 - 2 * z_theta)
phi = 2 * np.pi * z_phi
return omega_q(delta, eta, theta, phi)
class RandomJump:
def __init__(self, delta: float, eta: float, rng: Generator | None = None):
self._delta = delta
self._eta = eta
self._rng = rng
def __repr__(self):
return 'Random Jump'
def jump(self, size: int = 1) -> ArrayLike:
return draw_orientation(self._delta, self._eta, self._rng, size=size)

108
src/rwsims/parameter.py Normal file
View File

@ -0,0 +1,108 @@
from __future__ import annotations
from dataclasses import dataclass, field
from itertools import product
from typing import Any
import numpy as np
from src.rwsims.distributions import DeltaDistribution
from src.rwsims.motions import RandomJump
__all__ = ['SimParameter', 'MoleculeParameter', 'StimEchoParameter', 'SpectrumParameter', 'DistParameter', 'MotionParameter', 'Parameter']
@dataclass
class SimParameter:
seed: int | None
num_walker: int
t_max: float
@dataclass
class MoleculeParameter:
delta: float
eta: float
@dataclass
class StimEchoParameter:
t_evo: np.ndarray
t_mix: np.ndarray
t_max: float = field(init=False)
def __post_init__(self):
self.t_max = np.max(self.t_mix) + 2 * np.max(self.t_evo)
@dataclass
class SpectrumParameter:
dwell_time: float
num_points: int
t_echo: np.ndarray
t_acq: np.ndarray = field(init=False)
t_max: float = field(init=False)
lb: float
dampening: np.ndarray = field(init=False)
def __post_init__(self):
self.t_acq = np.arange(self.num_points) * self.dwell_time
self.dampening = np.exp(-self.lb * self.t_acq)
self.t_max = np.max(self.t_acq) + 2 * np.max(self.t_echo)
@dataclass
class DistParameter:
dist_type: DeltaDistribution
variables: field(default_factory=dict)
num_variables: int = 0
iter: field(init=False) = None
def __post_init__(self):
self.num_variables = sum(map(len, self.variables.values()))
def __iter__(self):
return self
def __next__(self) -> dict[str, Any]:
if self.iter is None:
self.iter = product(*self.variables.values())
try:
return dict(zip(self.variables.keys(), next(self.iter)))
except StopIteration:
self.iter = None
raise StopIteration
@dataclass
class MotionParameter:
model: RandomJump
variables: field(default_factory=dict)
num_variables: int = 0
iter: field(init=False) = None
def __post_init__(self):
self.num_variables = sum(map(len, self.variables.values()))
def __iter__(self):
return self
def __next__(self) -> dict[str, Any]:
if self.iter is None:
self.iter = product(*self.variables.values())
try:
return dict(zip(self.variables.keys(), next(self.iter)))
except StopIteration:
self.iter = None
raise StopIteration
@dataclass
class Parameter:
ste: StimEchoParameter | None
spec: SpectrumParameter | None
sim: SimParameter
dist: DistParameter
motion: MotionParameter
molecule: MoleculeParameter

130
src/rwsims/parser.py Normal file
View File

@ -0,0 +1,130 @@
from __future__ import annotations
import json
from typing import Any
import numpy as np
from distributions import (
DeltaDistribution
)
from motions import RandomJump
from parameter import *
def parse(config_file: str) -> Parameter:
with open(config_file, 'r') as f:
parameter: dict = json.load(f)
ste = _parse_ste(parameter.get('stimulated_echo'))
spec = _parse_spectrum(parameter.get('spectrum'))
if ste is None and spec is None:
raise ValueError("No parameter for STE or spectra given")
t_max = 0
if spec is not None:
t_max = max(spec.t_max, t_max)
if ste is not None:
t_max = max(ste.t_max, t_max)
parameter['simulation'].update({'t_max': t_max})
sim = _parse_sim(parameter['simulation'])
dist = _parse_dist(parameter['correlation_times'])
motion = _parse_motion(parameter['motion'])
mol = _parse_molecule(parameter['molecule'])
p = Parameter(sim=sim, ste=ste, spec=spec, dist=dist, motion=motion, molecule=mol)
return p
def _parse_sim(params: dict[str, Any]) -> SimParameter:
sim = SimParameter(
num_walker=params['num_walker'],
seed=params['seed'],
t_max=params['t_max']
)
return sim
def _parse_ste(params: dict[str, Any] | None) -> StimEchoParameter | None:
if params is None:
return
ste = StimEchoParameter(
t_mix=_make_times(params['t_mix']),
t_evo=_make_times(params['t_evo']),
)
return ste
def _parse_spectrum(params: dict[str, Any] | None) -> SpectrumParameter | None:
if params is None:
return
spec = SpectrumParameter(
num_points=params['num_points'],
dwell_time=params['dwell_time'],
t_echo=_make_times(params['t_echo']),
lb=params['line_broadening']
)
return spec
def _parse_dist(params: dict[str, Any]) -> DistParameter:
mapping: dict = {
'DeltaDistribution': DeltaDistribution
}
p = DistParameter(
dist_type=mapping[params['distribution']],
variables={k: _make_times(v) for k, v in params.items() if k != 'distribution'},
)
return p
def _parse_motion(params: dict[str, Any]) -> MotionParameter:
mapping = {
'RandomJump': RandomJump,
}
p = MotionParameter(
model=mapping[params['model']],
variables={k: _make_times(v) for k, v in params.items() if k != 'model'}
)
return p
def _parse_molecule(params: dict[str, Any]) -> MoleculeParameter:
return MoleculeParameter(
delta=params['delta'],
eta=params['eta']
)
def _make_times(params: float | int | dict[str, Any]) -> np.ndarray:
times = None
if isinstance(params, (int, float, complex)):
times = np.array([params])
else:
if all(k in params for k in ('start', 'stop', 'steps')):
space_func = np.linspace
if 'is_log' in params and params['is_log']:
space_func = np.geomspace
times = space_func(start=params['start'], stop=params['stop'], num=params['steps'])
if 'list' in params:
if times is not None:
raise ValueError('list and range is given')
times = np.array(params['list'])
if times is None:
raise ValueError('No times are given')
return times

212
src/rwsims/sims.py Normal file
View File

@ -0,0 +1,212 @@
from __future__ import annotations
from time import time
import numpy as np
from numpy.random import Generator
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from parameter import Parameter
from parser import parse
def ste(x, a, f_infty, tau, beta):
return a*((1-f_infty) * np.exp(-(x/tau)**beta) + f_infty)
def run_spectrum_sim(config_file: str):
p = parse(config_file)
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
num_echos = len(p.spec.t_echo)
reduction_factor = np.zeros((num_variables, num_echos))
freq = np.fft.fftshift(np.fft.fftfreq(p.spec.num_points, p.spec.dwell_time))
t_echo = p.spec.t_echo
t_echo_strings = list(map(str, t_echo))
# outer loop over variables of distribution of correlation times
for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng)
print(f'\nStart of {dist}')
chunks = int(0.6 * t_max / dist_values.get('tau', 1)) + 1
# second loop over parameter of motional model
for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'Start of {motion}')
print(f'Simulate in chunks of {chunks}')
timesignal = np.zeros((p.spec.num_points, num_echos))
start = time()
# inner loop to create trajectories
for n in range(num_traj):
phase_interpol = make_trajectory(chunks, dist, motion, t_max)
for (k, t_echo_k) in enumerate(t_echo):
# effect of de-phasing and re-phasing
start_amp = -2 * phase_interpol(t_echo_k)
# start of actual acquisition
timesignal[:, k] += np.cos(start_amp + phase_interpol(p.spec.t_acq + 2 * t_echo_k)) * p.spec.dampening
reduction_factor[max(p.motion.num_variables, 1)*i + j, k] += np.cos(phase_interpol(2 * t_echo_k) + start_amp)
print_step(n, num_traj, start)
timesignal /= num_traj
# FT to spectrum
spec = np.fft.fftshift(np.fft.fft(timesignal, axis=0), axes=0).real
spec -= spec[0]
# plot spectra
fig, ax = plt.subplots()
lines = ax.plot(freq, spec)
ax.set_title(f'{dist}, {motion}')
ax.legend(lines, t_echo_strings)
fig2, ax2 = plt.subplots()
ax2.semilogx(p.dist.variables['tau'], reduction_factor/num_traj, 'o--')
plt.show()
def run_ste_sim(config_file: str):
p = parse(config_file)
rng, num_traj, t_max, delta, eta, num_variables = _prepare_sim(p)
cc = np.zeros((len(p.ste.t_mix), num_variables, len(p.ste.t_evo)))
ss = np.zeros((len(p.ste.t_mix), num_variables, len(p.ste.t_evo)))
# outer loop over variables of distribution of correlation times
for (i, dist_values) in enumerate(p.dist):
# noinspection PyCallingNonCallable
dist = p.dist.dist_type(**dist_values, rng=rng)
print(f'\nStart of {dist}')
chunks = int(0.6 * t_max / dist_values.get('tau', 1)) + 1
# second loop over parameter of motional model
for (j, motion_values) in enumerate(p.motion):
# noinspection PyCallingNonCallable
motion = p.motion.model(delta, eta, **motion_values, rng=rng)
print(f'Start of {motion}')
print(f'Simulate in chunks of {chunks}')
start = time()
# inner loop to create trajectories
for n in range(num_traj):
phase_interpol = make_trajectory(chunks, dist, motion, t_max)
for (k, t_evo_k) in enumerate(p.ste.t_evo):
dephased = phase_interpol(t_evo_k)
rephased = phase_interpol(p.ste.t_mix + 2*t_evo_k)-phase_interpol(p.ste.t_mix+t_evo_k)
cc[:, max(p.motion.num_variables, 1)*i + j, k] += np.cos(dephased)*np.cos(rephased)
ss[:, max(p.motion.num_variables, 1)*i + j, k] += np.sin(dephased)*np.sin(rephased)
print_step(n, num_traj, start)
cc /= num_traj
ss /= num_traj
fig, ax = plt.subplots()
fig2, ax2 = plt.subplots()
fig5, ax5 = plt.subplots()
fig3, ax3 = plt.subplots()
fig4, ax4 = plt.subplots()
for j in range(num_variables):
p0 = [0.5, 0, 1e-2, 1]
ax3.plot(p.ste.t_evo, cc[0, j, :])
ax3.plot(p.ste.t_evo, ss[0, j, :])
ax4.plot(p.ste.t_evo, cc[-1, j, :] / cc[0, j, :])
ax4.plot(p.ste.t_evo, ss[-1, j, :] / ss[0, j, :])
p_final = []
p_final1 = []
for k, t_evo_k in enumerate(p.ste.t_evo):
res = curve_fit(ste, p.ste.t_mix, cc[:, j, k], p0=p0)
res2 = curve_fit(ste, p.ste.t_mix, ss[:, j, k], p0=p0)
p_final.append(res[0].tolist())
p_final1.append(res2[0].tolist())
p_final = np.array(p_final)
p_final1 = np.array(p_final1)
ax.plot(p.ste.t_evo, p_final[:, 0])
ax.plot(p.ste.t_evo, p_final1[:, 0])
ax.plot(p.ste.t_evo, p_final[:, 1])
ax.plot(p.ste.t_evo, p_final1[:, 1])
ax5.semilogy(p.ste.t_evo, p_final[:, 2])
ax5.semilogy(p.ste.t_evo, p_final1[:, 2])
ax2.plot(p.ste.t_evo, p_final[:, 3])
ax2.plot(p.ste.t_evo, p_final1[:, 3])
plt.show()
def print_step(n, num_traj, start):
if (n + 1) % 200 == 0:
elapsed = time() - start
print(f'Step {n + 1} of {num_traj}', end=' - ')
total = num_traj * elapsed / (n + 1)
print(f'total: {total:.2f}s - elapsed: {elapsed:.2f}s - remaining: {total - elapsed:.2f}s')
def make_trajectory(chunks: int, dist, motion, t_max: float):
t_passed = 0
t = [0]
phase = [0]
accumulated_phase = 0
while t_passed < t_max:
# orientation until the next jump
current_omega = motion.jump(size=chunks)
# time to next jump
t_wait = dist.wait(size=chunks)
accumulated_phase = np.cumsum(t_wait * current_omega) + phase[-1]
t_wait = np.cumsum(t_wait) + t_passed
t_passed = t_wait[-1]
t.extend(t_wait.tolist())
phase.extend(accumulated_phase.tolist())
# convenient interpolation to get phase at arbitrary times
phase_interpol = interp1d(t, phase)
return phase_interpol
def _prepare_sim(parameter: Parameter) -> tuple[Generator, int, float, float, float, int]:
# random number generator
rng = np.random.default_rng(parameter.sim.seed)
# number of random walkers
num_traj = parameter.sim.num_walker
# length of trajectories
t_max = parameter.sim.t_max
# parameter for omega_q
delta, eta = parameter.molecule.delta, parameter.molecule.eta
num_variables = parameter.dist.num_variables + parameter.motion.num_variables
return rng, num_traj, t_max, delta, eta, num_variables
if __name__ == '__main__':
run_ste_sim('../config.json')
run_spectrum_sim('../config.json')

View File

@ -11,12 +11,12 @@ eta = 0
lb = 5e3 # in Hz
# correlation time
tau = [1e-6] # in s
tau = np.logspace(-8, -1, num=15) # in s
# acquisition parameter
acq_length = 4096
dt = 1e-6 # in s
t_echo = [0, 5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
t_echo = [5e-6, 10e-6, 20e-6, 50e-6, 100e-6, 200e-6] # all in s
# derived parameter
t_acq = np.arange(acq_length) * dt
@ -28,7 +28,7 @@ seed = None
rng = np.random.default_rng(seed)
# number of random walkers
num_traj = 50000
num_traj = 1
def omega_q(delta_: float, eta_: float, theta_: ArrayLike, phi_: ArrayLike) -> np.ndarray:
@ -60,7 +60,10 @@ def new_tau(size=1) -> np.ndarray:
return rng.exponential(tau_i, size=size)
for tau_i in tau:
reduction_factor = np.zeros((len(tau), len(t_echo)))
for (n, tau_i) in enumerate(tau):
print(f'\nStart for tau={tau_i}')
timesignal = np.zeros((acq_length, len(t_echo)))
@ -127,6 +130,7 @@ for tau_i in tau:
# start of actual acquisition
timesignal[:, j] += np.cos(start_amp + phase_interpol(t_acq + 2*t_echo_j)) * dampening
reduction_factor[n, j] += np.cos(phase_interpol(2*t_echo_j) + start_amp)
if (i+1) % 200 == 0:
elapsed = time()-start
@ -155,4 +159,7 @@ for tau_i in tau:
# np.savetxt(f'spectrum_{tau_i}.dat', np.c_[freq, spec], header='f\t' + '\t'.join(t_echo_strings))
# np.savetxt(f'timesignal_{tau_i}.dat', np.c_[t_acq, timesignal], header='t\t' + '\t'.join(t_echo_strings))
fig2, ax2 = plt.subplots()
ax2.semilogx(tau, reduction_factor / num_traj, 'o--')
plt.show()