from __future__ import annotations from abc import ABC, abstractmethod import numpy as np from numpy.random import Generator class BaseDistribution(ABC): def __init__(self, tau: float, rng: Generator | None = None): self._tau = tau self._rng = rng self.tau_jump = tau @property def name(self) -> str: return self.__class__.__name__ @abstractmethod def __repr__(self): pass def header(self): return f'tau = {self._tau}' @abstractmethod def start(self): pass @property @abstractmethod def mean_tau(self): pass def wait(self, size: int = 1) -> 'ArrayLike': return self._rng.exponential(self.tau_jump, size=size) class DeltaDistribution(BaseDistribution): def __repr__(self): return f'Delta Distribution (tau={self._tau})' def start(self): self.tau_jump = self._tau @property def mean_tau(self): return self._tau class LogGaussianDistribution(BaseDistribution): def __init__(self, tau: float, sigma: float, rng: Generator): super().__init__(tau=tau, rng=rng) self._sigma = sigma def __repr__(self): return f'Log-Gaussian(tau={self._tau}, sigma={self._sigma})' def header(self) -> str: return ( f'tau = {self._tau}\n' f'sigma = {self._sigma}' ) def start(self): self.tau_jump = self._rng.lognormal(np.log(self._tau), self._sigma) @property def mean_tau(self): return self._tau * np.exp(self._sigma**2 / 2)