forked from IPKM/nmreval
doc added; reading of isochronal bds
This commit is contained in:
6
doc/examples/nmr/README.rst
Normal file
6
doc/examples/nmr/README.rst
Normal file
@ -0,0 +1,6 @@
|
||||
.. _nmr_examples:
|
||||
|
||||
.. _nmr-examples-index:
|
||||
|
||||
NMR specifics
|
||||
=============
|
67
doc/examples/nmr/plot_RelaxationEvaluation.py
Normal file
67
doc/examples/nmr/plot_RelaxationEvaluation.py
Normal file
@ -0,0 +1,67 @@
|
||||
"""
|
||||
=======================
|
||||
Spin-lattice relaxation
|
||||
=======================
|
||||
|
||||
Example for
|
||||
"""
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from nmreval.distributions import ColeDavidson
|
||||
from nmreval.nmr import Relaxation, RelaxationEvaluation
|
||||
from nmreval.nmr.coupling import Quadrupolar
|
||||
from nmreval.utils.constants import kB
|
||||
|
||||
# Define temperature range
|
||||
inv_temp = np.linspace(3, 9, num=30)
|
||||
temperature = 1000/inv_temp
|
||||
|
||||
# spectral density parameter
|
||||
ea = 0.45
|
||||
tau = 1e-21 * np.exp(ea / kB / temperature)
|
||||
gamma_cd = 0.1
|
||||
|
||||
# interaction parameter
|
||||
omega = 2*np.pi*46e6
|
||||
delta = 120e3
|
||||
eta = 0
|
||||
|
||||
r = Relaxation()
|
||||
r.set_distribution(ColeDavidson) # the only parameter that has to be set beforehand
|
||||
|
||||
t1_values = r.t1(omega, tau, gamma_cd, mode='bpp',
|
||||
prefactor=Quadrupolar.relax(delta, eta))
|
||||
# add noise
|
||||
rng = np.random.default_rng(123456789)
|
||||
noisy = (rng.random(t1_values.size)-0.5) * 0.5 * t1_values + t1_values
|
||||
|
||||
# set parameter and data
|
||||
r_eval = RelaxationEvaluation()
|
||||
r_eval.set_distribution(ColeDavidson)
|
||||
r_eval.set_coupling(Quadrupolar, (delta, eta))
|
||||
r_eval.data(temperature, noisy)
|
||||
r_eval.omega = omega
|
||||
|
||||
t1_min_data, _ = r_eval.calculate_t1_min() # second argument is None
|
||||
t1_min_inter, line = r_eval.calculate_t1_min(interpolate=1, trange=(160, 195), use_log=True)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.semilogy(1000/t1_min_data[0], t1_min_data[1], 'rx', label='Data minimum')
|
||||
ax.semilogy(1000/t1_min_inter[0], t1_min_inter[1], 'r+', label='Parabola')
|
||||
ax.semilogy(1000/line[0], line[1])
|
||||
|
||||
found_gamma, found_height = r_eval.get_increase(t1_min_inter[1], idx=0, mode='distribution')
|
||||
print(found_gamma)
|
||||
|
||||
plt.axhline(found_height)
|
||||
plt.show()
|
||||
|
||||
#%%
|
||||
# Now we found temperature and height of the minimum we can calculate the correlation time
|
||||
|
||||
plt.semilogy(1000/temperature, tau)
|
||||
tau_from_t1, opts = r_eval.correlation_from_t1()
|
||||
print(opts)
|
||||
plt.semilogy(1000/tau_from_t1[:, 0], tau_from_t1[:, 1], 'o')
|
||||
plt.show()
|
Reference in New Issue
Block a user