1
0
forked from IPKM/nmreval
nmreval/nmreval/fit/parameter.py

167 lines
4.4 KiB
Python

from __future__ import annotations
from numbers import Number
from itertools import count
import numpy as np
class Parameters(dict):
count = count()
def __str__(self):
return 'Parameters:\n' + '\n'.join([str(k)+': '+str(v) for k, v in self.items()])
def __getitem__(self, item):
if isinstance(item, (list, tuple, np.ndarray)):
values = []
for item_i in item:
values.append(super().__getitem__(item_i))
return values
else:
return super().__getitem__(item)
@staticmethod
def _prep_bounds(val, p_len: int) -> list:
# helper function to ensure that bounds and variable are of parameter shape
if isinstance(val, (Number, bool)) or val is None:
return [val] * p_len
elif len(val) == p_len:
return val
elif len(val) == 1:
return [val[0]] * p_len
else:
raise ValueError('Input {} has wrong dimensions'.format(val))
def add_parameter(self, param, var=None, lb=None, ub=None):
if isinstance(param, Number):
param = [param]
p_len = len(param)
# make list if only single value is given
var = self._prep_bounds(var, p_len)
lb = self._prep_bounds(lb, p_len)
ub = self._prep_bounds(ub, p_len)
new_keys = []
for i in range(p_len):
new_idx = next(self.count)
new_keys.append(new_idx)
self[new_idx] = Parameter(param[i], var=var[i], lb=lb[i], ub=ub[i])
return new_keys
def copy(self):
p = Parameters()
for k, v in self.items():
p[k] = Parameter(v.value, var=v.var, lb=v.lb, ub=v.ub)
if len(p) == 0:
return p
max_k = max(p.keys())
c = next(p.count)
while c < max_k:
c = next(p.count)
return p
def get_state(self):
return {k: v.get_state() for k, v in self.items()}
class Parameter:
"""
Container for one parameter
"""
__slots__ = ['name', 'value', 'error', 'init_val', 'var', 'lb', 'ub', 'scale', 'function']
def __init__(self, value: float, var: bool = True, lb: float = -np.inf, ub: float = np.inf):
self.lb = lb if lb is not None else -np.inf
self.ub = ub if ub is not None else np.inf
if self.lb <= value <= self.ub:
self.value = value
else:
raise ValueError('Value of parameter is outside bounds')
self.init_val = value
with np.errstate(divide='ignore'):
# throws RuntimeWarning for zeros
self.scale = 10**(np.floor(np.log10(np.abs(self.value))))
if self.scale == 0:
self.scale = 1.
self.var = bool(var) if var is not None else True
self.error = None if self.var is False else 0.0
self.name = ''
self.function = ''
def __str__(self):
start = ''
if self.name:
if self.function:
start = f'{self.name} ({self.function}): '
else:
start = self.name + ': '
if self.var:
return start + f'{self.value:.4g} +/- {self.error:.4g}, init={self.init_val}'
else:
return start + f'{self.value:} (fixed)'
def __add__(self, other: Parameter | float) -> float:
if isinstance(other, (float, int)):
return self.value + other
elif isinstance(other, Parameter):
return self.value + other.value
def __radd__(self, other: Parameter | float) -> float:
return self.__add__(other)
@property
def scaled_value(self):
return self.value / self.scale
@scaled_value.setter
def scaled_value(self, value):
self.value = value * self.scale
@property
def scaled_error(self):
if self.error is None:
return self.error
else:
return self.error / self.scale
@scaled_error.setter
def scaled_error(self, value):
self.error = value * self.scale
def get_state(self):
return {slot: getattr(self, slot) for slot in self.__slots__}
@staticmethod
def set_state(state: dict):
par = Parameter(state.pop('value'))
for k, v in state.items():
setattr(par, k, v)
return par
@property
def full_name(self):
name = self.name
if self.function:
name += ' (' + self.function + ')'
return name