1
0
forked from IPKM/nmreval
nmreval/nmreval/io/dsc.py
2022-03-08 10:27:40 +01:00

324 lines
12 KiB
Python

from pathlib import Path
import re
from collections import namedtuple
from typing import Union
import numpy as np
try:
from scipy.integrate import simpson
except ImportError:
from scipy.integrate import simps as simpson
from scipy.interpolate import interp1d
ReferenceValue = namedtuple('Reference', ['name', 'transitions'])
Cyclohexane = ReferenceValue('Cyclohexane', [(-87.06+273.15, 79.58), (6.54+273.15, None)])
class DSCSample:
NUMBER_RE = re.compile(r'(-?\d+(?:\.\d*)?)')
DSC_RUN_RE = re.compile(r'(\d+)\) DSC')
DSC_END_RE = re.compile(r'DSC8[50]00 MANUAL TUNE')
def __init__(self, fname: Union[str, Path]):
fname = Path(fname)
if fname.exists():
self.fname = fname
else:
raise IOError(f'{fname} does not exist')
self.weight = None
self.steps = []
self.starts = []
self.read_file(fname)
def read_file(self, fname: Union[str, Path]):
fname = Path(fname)
# file contains weird deg C character in stupiod ISO encoding
with fname.open('r', encoding='iso-8859-15') as f:
ii = 1
for line in f:
# iterate over file and look for different steps and start/end positions
if 'Heat from' in line:
match = DSCSample.NUMBER_RE.findall(line)
self.steps.append(('h', float(match[3]), float(match[1])+273.15, float(match[2])+273.15))
elif 'Cool from' in line:
match = DSCSample.NUMBER_RE.findall(line)
self.steps.append(('c', float(match[3]), float(match[1])+273.15, float(match[2])+273.15))
elif 'Hold for' in line:
match = DSCSample.NUMBER_RE.findall(line)
self.steps.append(('i', float(match[2])+273.15, float(match[1])*60))
# start of measurement step
elif DSCSample.DSC_RUN_RE.match(line):
match = DSCSample.DSC_RUN_RE.match(line)
r = int(match.group(1))
if r == 1:
# account for table header
self.starts.append(ii + 2)
else:
self.starts.append(ii)
elif 'Display Weight' in line:
self.weight = float(DSCSample.NUMBER_RE.search(line).group()) * 1e-3
# end of measurements
elif DSCSample.DSC_END_RE.search(line) is not None:
end_line = ii - 2
ii += 1
# there are weird empty lines in the beginning that mess up the line count
if r'\r\r\n' in repr(line):
ii += 1
self.starts.append(end_line)
@property
def cooling(self) -> dict:
ret_val = {}
for i, step in enumerate(self.steps):
if step[0] == 'c':
ret_val[i] = step[1]
return ret_val
@property
def heating(self) -> dict:
ret_val = {}
for i, step in enumerate(self.steps):
if step[0] == 'h':
ret_val[i] = step[1]
return ret_val
def get_run(self, rate: float, mode: str = 'h') -> int:
r = None
for k, v in enumerate(self.steps):
if (v[0] == mode) and (v[1] == rate):
r = k
break
if r is None:
raise ValueError(f'Rate {rate} not found')
return r
def length(self, run: int) -> int:
return self.starts[run+1] - self.starts[run] - 2
def flow_data(self, run: int, length: int = None):
start = self.starts[run]
if length is None:
length = self.length(run)
with self.fname.open('r', encoding='iso-8859-15') as f:
raw_data = np.genfromtxt(f, skip_header=start, max_rows=length-1, usecols=(4, 1, 0))
raw_data[:, 0] += 273.15
raw_data[:, 2] *= 60
return raw_data.T
def isotherm_data(self, run: int, length: int = None) -> np.ndarray:
start = self.starts[run]
if length is None:
length = self.length(run)
with self.fname.open('r', encoding='iso-8859-15') as f:
raw_data = np.genfromtxt(f, skip_header=start, max_rows=length-1, usecols=(0, 1))
raw_data[:, 0] *= 60
return raw_data.T
class DSCCalibrator:
def __init__(self):
self.sample = None
self.empty = None
self.reference =[]
self.ref_list = []
def set_measurement(self,
fname: Union[str, Path, DSCSample], mode: str = 'sample',
reference: ReferenceValue = Cyclohexane):
if mode not in ['sample', 'empty', 'reference']:
raise ValueError(f'Unknown mode {mode}, not "sample", "empty", "reference"')
if mode == 'reference' and not isinstance(reference, ReferenceValue):
raise ValueError(f'Reference measurement has no reference values')
if not isinstance(fname, DSCSample):
fname = DSCSample(fname)
if mode == 'sample':
self.sample = fname
elif mode == 'empty':
self.empty = fname
else:
self.reference.append(fname)
self.ref_list.append(reference)
return fname
def remove_reference(self, fname: Union[str, Path]):
fname = Path(fname)
i = None
for i, ref in enumerate(self.reference):
if ref.fname == fname:
self.reference.pop(i)
break
if i is not None:
self.ref_list.pop(i)
def get_calibration(self, rate: float):
real_tm = []
melts = []
calib_y = []
results = []
for data, ref_value in zip(self.reference, self.ref_list):
try:
idx = data.get_run(rate, mode='h')
except ValueError:
return None, None, []
measurement = data.flow_data(idx)
for trans_temp, enthalpy in ref_value.transitions:
real_tm.append(trans_temp)
t_low_lim, t_high_lim = trans_temp - 10, trans_temp + 20
low_border = np.argmin(np.abs(measurement[0] - t_low_lim))
high_border = np.argmin(np.abs(measurement[0] - t_high_lim))
ref_zoom = measurement[:, low_border:high_border]
x_val = np.array([[ref_zoom[0, 0], 1], [ref_zoom[0, -1], 1]])
y_val = np.array([ref_zoom[1, 0], ref_zoom[1, -1]])
sol = np.linalg.solve(x_val, y_val)
ref_zoom[1] -= (ref_zoom[0] * sol[0] + sol[1])
peak_max = ref_zoom[:, np.argmax(ref_zoom[1])]
integ_limit = (np.argmin(np.abs(ref_zoom[0] - peak_max[0] + 3)),
np.argmin(np.abs(ref_zoom[0] - peak_max[0] - 3)))
# substract baseline around reference peaks
x_val = np.array([[ref_zoom[0, integ_limit[0]], 1], [ref_zoom[0, integ_limit[1]], 1]])
y_val = np.array([ref_zoom[1, integ_limit[0]], ref_zoom[1, integ_limit[1]]])
sol = np.linalg.solve(x_val, y_val)
ref_zoom[1] -= (ref_zoom[0] * sol[0] + sol[1])
# calculate onset slope (use points at position of maximum gradient - 100/rate (+50/rate))
ref_grad = np.gradient(ref_zoom[1])
max_grad = np.argmax(ref_grad)
grad_pos = max_grad-int(50 / rate), max_grad
x_val = np.array([[ref_zoom[0, grad_pos[0]], 1],
[ref_zoom[0, grad_pos[1]], 1]])
y_val = np.array([ref_zoom[1, grad_pos[0]],
ref_zoom[1,grad_pos[1]]])
sol = np.linalg.solve(x_val, y_val)
onset = sol[0] * ref_zoom[0] + sol[1]
melts.append(-sol[1] / sol[0])
if enthalpy is not None:
# integrate over peak to calibrate y axis
# delta H in J/g: Integrate Peak over time and divide by weight
area = simpson(ref_zoom[1, integ_limit[0]:integ_limit[1]],
ref_zoom[2, integ_limit[0]:integ_limit[1]],
even='avg') * 1e-3
calib_y.append(enthalpy / (area / data.weight))
results.append([ref_zoom, onset, ref_zoom[:, grad_pos]])
if len(melts) > 1:
A = np.vstack([melts, np.ones(len(melts))]).T
y = np.array(real_tm)
calib_x = np.linalg.lstsq(A, y, rcond=None)[0]
else:
calib_x = [1, 0]
if calib_y:
calib_y = 1e-3 * np.mean(calib_y) * 60. / self.sample.weight / rate
else:
calib_y = 1
return calib_x, calib_y, results
def get_data(self, idx, slope='iso'):
if self.sample.steps[idx][0] == 'i':
raise ValueError('baseline correction is not implemented for isotherms')
if slope not in ['iso', 'curve', None]:
raise ValueError(f'Unknown argument for slope {slope}, not "iso" or "curve"')
sample_data = self.sample.flow_data(idx)
raw_sample = sample_data.copy()
empty_data = None
mode, rate, _, _ = self.sample.steps[idx]
empty_y = 0
idx_empty = 0
if self.empty is not None:
try:
idx_empty = self.empty.get_run(rate, mode=mode)
except ValueError:
raise ValueError(f'Empty measurement has no heat rate {rate} K/min')
empty_data = self.empty.flow_data(idx_empty)
empty_y = empty_data[1]
if self.sample.length(idx) != self.empty.length(idx_empty):
with np.errstate(all='ignore'):
empty_y = interp1d(empty_data[0], empty_data[1], fill_value='extrapolate')(sample_data[0])
sample_data[1] -= empty_y
drift_value = sample_data.copy()[(2, 1), :]
mean_isotherms = []
for offset in [-1, 1]:
# read isotherms
isotherm_sample = self.sample.isotherm_data(idx+offset)
if self.empty is not None:
isotherm_empty = self.empty.isotherm_data(idx_empty+offset)
isotherm_sample[1] -= isotherm_empty[1, 200:-200].mean()
# get mean isotherm value
m = isotherm_sample[1, 200:-200].mean()
mean_isotherms.append(m)
if offset == -1:
drift_value = np.c_[isotherm_sample, drift_value]
else:
drift_value = np.c_[drift_value, isotherm_sample]
if slope is not None:
if slope == 'iso':
# calculate slope from difference between isotherms
m = (mean_isotherms[1] - mean_isotherms[0]) / (sample_data[2, -1] - sample_data[2, 0])
offset = sample_data[1, 200]
else:
# calculate mean slope of heat flow from points in the beginning
offset = sample_data[1, 200]
grad = np.gradient(sample_data[1, :], sample_data[2, :])
m = grad[(grad < grad.mean()+grad.std()/5)*(grad > grad.mean()-grad.std()/5)].mean()
sample_data[1] -= m * (sample_data[2] - sample_data[2, 200]) + offset
line = np.array([[sample_data[2, 0], sample_data[2, -1]],
[m * (sample_data[2, 200] - sample_data[2, 200]) + offset,
m * (sample_data[2, -1] - sample_data[2, 200]) + offset]])
else:
line = np.array([[sample_data[2, 0], sample_data[2, -1]], [0, 0]])
return raw_sample, drift_value, sample_data, empty_data, line