AD5791 data and clock bits now settable via methods (like latch enable)

This commit is contained in:
Markus Rosenstihl 2017-02-01 18:17:43 +01:00
parent 921d0b8ead
commit 3da3b70ddd

View File

@ -27,21 +27,35 @@ using std::vector;
#define DAC_DATA_BITS 20 #define DAC_DATA_BITS 20
#define DAC_CONTROL_BITS 4 #define DAC_CONTROL_BITS 4
// The channel configuration // The default channel configuration
#define DATA_BIT 18//18 #define LE_BIT 17
#define CLK_BIT 16//16 #define DATA_BIT 18
#define CLK_BIT 16
// Input shift register addresses
// Write to DAC register 0001
#define WRITE_DAC 1
// Write to the control register 0010
#define WRITE_CONTROL_REGISTER 2
// Write to the clearcode register 0011
#define WRITE_CLEARCODE_REGISTER 3
// Write to the software control register 0100
#define WRITE_SOFTWARE_CONTROL_REGISTER 4
// this bit needs to be set to write the DAC register
#define WRITE_DAC 1<<20
// software control register // software control register settings
// Setting this bit to a 1 returns the AD5791 to its power-on state.
#define RESET 1 #define RESET 1
// Setting this bit to a 1 sets the DAC register to a user defined value (see Table 13) and updates the DAC output. The output
// value depends on the DAC register coding that is being used, either binary or twos complement.
#define CLR 2 #define CLR 2
// Setting this bit to a 1 updates the DAC register and consequently the DAC output.
#define LDAC 4 #define LDAC 4
// control register // control register settings
// Linearity error compensation for varying reference input spans. // Linearity error compensation for varying reference input spans.
#define LINCOMP_10V 0*1<<9 + 0*1<<8 + 0*1<<7 + 0*1<<6 #define LINCOMP_10V 0*1<<9 + 0*1<<8 + 0*1<<7 + 0*1<<6
#define LINCOMP_12V 1*1<<9 + 0*1<<8 + 0*1<<7 + 1*1<<6 #define LINCOMP_12V 1*1<<9 + 0*1<<8 + 0*1<<7 + 1*1<<6
@ -63,7 +77,9 @@ using std::vector;
AD5791::AD5791(int myid) : id(myid) { AD5791::AD5791(int myid) : id(myid) {
dac_value = 0; dac_value = 0;
set_latch_bit(17); set_latch_bit(LE_BIT);
set_data_bit(DATA_BIT);
set_clock_bit(CLK_BIT);
} }
AD5791::~AD5791() {} AD5791::~AD5791() {}
@ -72,10 +88,20 @@ void AD5791::set_dac(signed dw) {
dac_value = dw; dac_value = dw;
} }
void AD5791::set_latch_bit(int le_bit) void AD5791::set_latch_bit(int bit)
{ {
latch_bit = le_bit; latch_bit = bit;
} }
void AD5791::set_data_bit(int bit)
{
data_bit = bit;
}
void AD5791::set_clock_bit(int bit)
{
clock_bit = bit;
}
// This sets the DAC // This sets the DAC
void AD5791::set_dac(state &experiment) { void AD5791::set_dac(state &experiment) {
state_sequent *exp_sequence = dynamic_cast<state_sequent *>(&experiment); state_sequent *exp_sequence = dynamic_cast<state_sequent *>(&experiment);
@ -98,111 +124,67 @@ void AD5791::set_dac(state &experiment) {
} }
} }
/**
* push one bit to the DAC, this function returns a state_sequent one can add
*
* @param bit
* @return
*/
state_sequent* AD5791::tx_bit(unsigned int bit) { state_sequent* AD5791::tx_bit(unsigned int bit) {
state_sequent* tx = new state_sequent(); state_sequent* tx = new state_sequent();
ttlout* ttl_state = new ttlout(); ttlout* ttl_state = new ttlout();
state s(TIMING); state s(TIMING);
s.push_back(ttl_state); s.push_back(ttl_state);
ttl_state->ttls = bit*(1<<DATA_BIT) + (1 << CLK_BIT); ttl_state->ttls = bit*(1<<data_bit) + (1 << clock_bit);
tx->push_back(s.copy_new()); tx->push_back(s.copy_new());
ttl_state->ttls = (1<<DATA_BIT); ttl_state->ttls = (1<<data_bit);
tx->push_back(s.copy_new()); tx->push_back(s.copy_new());
return tx; return tx;
} }
state_sequent* AD5791::select_input_shift_register(unsigned int register_address){
state_sequent* tx = new state_sequent();
int count = DAC_CONTROL_BITS;
while (register_address != 0 and count !=0 ) {
tx->push_back(tx_bit(register_address & 1));
register_address >>= 1;
count--;
}
return tx;
}
state_sequent* AD5791::write_serial_register(unsigned int register_value){
state_sequent* tx = new state_sequent();
vector<int> dac_word;
// generate the bit pattern, this is MSB last
for (int j = 0; j < DAC_DATA_BITS; j++) {
int bit = register_value & 1;
dac_word.push_back(bit);
register_value >>= 1;
}
// iterate over the dac_word from end to beginning, this is MSB first
// TODO: Run Length Encoding (maybe better on higher level, i.e. full state sequence?)
for (vector<int>::reverse_iterator current_bit = dac_word.rbegin();
current_bit != dac_word.rend();
++current_bit){
tx->push_back(tx_bit(*current_bit));
}
return tx;
}
void AD5791::set_dac_to_zero(state_sequent* exp_sequence, state::iterator where) { void AD5791::set_dac_to_zero(state_sequent* exp_sequence, state::iterator where) {
// 0001 0000 0000 0000 0000 0000 // 0001 0000 0000 0000 0000 0000
state s(TIMING); exp_sequence->insert(where, select_input_shift_register(WRITE_DAC));
ttlout* ttl_state = new ttlout(); exp_sequence->insert(where, write_serial_register(0));
ttl_state->id = 0;
s.push_front(ttl_state);
// test exp_sequence->insert(where, tx_bit(1));
exp_sequence->insert(where, tx_bit(1));
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
// 1
ttl_state->ttls = (1<<DATA_BIT) + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = (1<<DATA_BIT);
exp_sequence->insert(where, s.copy_new());
// the rest
state_sequent *rep_sequence = new state_sequent();
rep_sequence->repeat = DAC_DATA_BITS;
ttl_state->ttls = 0 + (1 << CLK_BIT);
rep_sequence->push_back(s.copy_new());
ttl_state->ttls = 0;
rep_sequence->push_back(s.copy_new());
exp_sequence->insert(where, rep_sequence);
//read in the word
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = (1 << latch_bit);
exp_sequence->insert(where, s.copy_new());
} }
void AD5791::init_dac(state_sequent *exp_sequence, state::iterator where) { void AD5791::init_dac(state_sequent *exp_sequence, state::iterator where) {
state s(TIMING); exp_sequence->insert(where, select_input_shift_register(WRITE_CONTROL_REGISTER));
ttlout *ttl_state = new ttlout(); exp_sequence->insert(where, write_serial_register(0));
ttl_state->id = 0;
s.push_front(ttl_state);
// 0010 0000 0000 0000 0000 0000
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where,s.copy_new());
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
// 1
ttl_state->ttls = (1<<DATA_BIT) + (1 << CLK_BIT);
exp_sequence->insert(where,s.copy_new());
ttl_state->ttls = (1<<DATA_BIT);
exp_sequence->insert(where,s.copy_new());
// 0
ttl_state->ttls = 0 + (1 << CLK_BIT);
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = 0;
exp_sequence->insert(where,s.copy_new());
// the rest
state_sequent *rep_sequence = new state_sequent();
rep_sequence->repeat = DAC_DATA_BITS;
ttl_state->ttls = 0 + (1 << CLK_BIT);
rep_sequence->push_back(s.copy_new());
ttl_state->ttls = 0;
rep_sequence->push_back(s.copy_new());
exp_sequence->insert(where, rep_sequence);
//read in the word
ttl_state->ttls = 0;
exp_sequence->insert(where, s.copy_new());
ttl_state->ttls = (1 << latch_bit) + (1<<CLK_BIT);
s.length = 180e-9;
exp_sequence->insert(where, s.copy_new());
} }
// This loops recursive through the state tree // This loops recursive through the state tree
void AD5791::set_dac_recursive(state_sequent &the_sequence, state::iterator &the_state) { void AD5791::set_dac_recursive(state_sequent &the_sequence, state::iterator &the_state) {
@ -232,8 +214,9 @@ void AD5791::set_dac_recursive(state_sequent &the_sequence, state::iterator &the
} }
// there is no place for me here // there is no place for me here
else { else {
throw pfg_exception("found another DAC section, ignoring");
delete aout; delete aout;
throw pfg_exception("found another DAC section, ignoring");
} }
// remove the analog out section // remove the analog out section
this_state->erase(pos++); this_state->erase(pos++);
@ -261,67 +244,23 @@ void AD5791::set_dac_recursive(state_sequent &the_sequence, state::iterator &the
if (abs(dac_analog_out->dac_value) > pow(2.0, int(DAC_DATA_BITS - 1))) if (abs(dac_analog_out->dac_value) > pow(2.0, int(DAC_DATA_BITS - 1)))
throw pfg_exception("dac_value too low"); throw pfg_exception("dac_value too low");
// set dac write register 1<<20 state_sequent *input = new state_sequent();
dac_analog_out->dac_value += WRITE_DAC; state_sequent *dacword = new state_sequent();
vector<int> dac_word; input = select_input_shift_register(WRITE_DAC);
// generate the bit pattern, this is MSB last dacword = write_serial_register(dac_analog_out->dac_value);
for (int j = 0; j < (DAC_DATA_BITS + DAC_CONTROL_BITS); j++) { register_state->push_back(input);
int bit = dac_analog_out->dac_value & 1; register_state->push_back(dacword);
dac_word.push_back(bit);
dac_analog_out->dac_value >>= 1;
std::cout << bit;
}
// reverse the bit pattern (MSB first)
reverse(dac_word.begin(), dac_word.end());
// need one clock cycle to read in bit
// latch enable (LE) should always be high while doing so
// except for the last bit
// do run length encoding, grouping same bit values in loops
int last_seen_bit = dac_word[0];
int last_seen_bit_count = 1;
for (int i = 1; i < (DAC_DATA_BITS + DAC_CONTROL_BITS) + 1; i++) {
if (i == (DAC_DATA_BITS + DAC_CONTROL_BITS) || last_seen_bit != dac_word[i]) {
// so we have to write the bits
// either because the previous were different or we are finished
if (last_seen_bit_count > 1) {
// insert a loop
state_sequent *rep_sequence = new state_sequent();
rep_sequence->repeat = last_seen_bit_count;
register_ttls->ttls = (1 << DATA_BIT) * last_seen_bit + (1 << CLK_BIT) + (1 << latch_bit);
rep_sequence->push_back(register_state->copy_new());
register_ttls->ttls = (1 << DATA_BIT) * last_seen_bit + (1 << latch_bit);
rep_sequence->push_back(register_state->copy_new());
the_sequence.insert(the_state, rep_sequence);
} else {
// no loop necessary, insert two states
register_ttls->ttls = (1 << DATA_BIT) * last_seen_bit + (1 << CLK_BIT) + (1 << latch_bit);
the_sequence.insert(the_state, register_state->copy_new());
register_ttls->ttls = (1 << DATA_BIT) * last_seen_bit + (1 << latch_bit);
the_sequence.insert(the_state, register_state->copy_new());
}
// reset counter and bits if we are not finished
if (i < (DAC_DATA_BITS + DAC_CONTROL_BITS)) {
last_seen_bit = dac_word[i];
last_seen_bit_count = 1;
}
} // finished writing
else
last_seen_bit_count += 1; // same bit value, so continue
} // end of bit loop
register_ttls->ttls = 0;
the_sequence.insert(the_state, register_state->copy_new());
// shorten the remaining state // shorten the remaining state
this_state->length -= input->length + dacword->length;
// and add LE high to this state // and add LE high to this state
ttlout *ttls = new ttlout(); ttlout *ttls = new ttlout();
// 2 clocks per bit + 1 for sync
this_state->length -= TIMING * 2 * (DAC_DATA_BITS + DAC_CONTROL_BITS) + 1;
ttls->ttls = 1 << latch_bit; ttls->ttls = 1 << latch_bit;
this_state->push_front(ttls); this_state->push_front(ttls);
// cleanup // cleanup
delete input;
delete dacword;
delete register_state; delete register_state;
delete dac_analog_out; delete dac_analog_out;
} // state was long enough to work on } // state was long enough to work on